
PARTICLE 102 - INTRODUCING PARTICLE PRIMITIVES, THE DEVICE
CLOUD, MESH, BLE, AND NFC

WORKING WITH PARTICLE PRIMITIVES

INTRODUCING PARTICLE GEN3 & MESH

MESH PUBLISH & SUBSCRIBE

BLUETOOTH & NFC

MANAGING DEVICES FROM THE CONSOLE

WORKING WITH PARTICLE PRIMITIVES

INTRODUCING PARTICLE GEN3 & MESH

MESH PUBLISH & SUBSCRIBE

BLUETOOTH & NFC

MANAGING DEVICES FROM THE CONSOLE

CONSOLE.PARTICLE.IO

CONSOLE.PARTICLE.IO

All your devices

CONSOLE.PARTICLE.IO

All your devicesTheir type and name

CONSOLE.PARTICLE.IO

All your devicesTheir type and nameAnd the last time they
appeared online

REAL-TIME EVENT LOGS

SIM MANAGEMENT

SIM MANAGEMENT

FLEET & FIRMWARE MANAGEMENT WITH PRODUCTS

FLEET & FIRMWARE MANAGEMENT WITH PRODUCTS

REMOTE DIAGNOSTICS

VIEWING CLOUD VARIABLES AND CALLING CLOUD FUNCTIONS

THE PARTICLE CONSOLE

DEMO

WORKING WITH PARTICLE PRIMITIVES

INTRODUCING PARTICLE GEN3 & MESH

MESH PUBLISH & SUBSCRIBE

BLUETOOTH & NFC

MANAGING DEVICES FROM THE CONSOLE

PARTICLE CLOUD FUNCTIONS

Call a function, remotely
Particle.function()

Fetch a variable, remotely
Particle.variable()

Listen for events
Particle.subscribe()

Send an event to the cloud
Particle.publish()

PARTICLE.VARIABLE()

int analogvalue = 0;
double tempC = 0;

void setup()
{
 !// variable name max length is 12 characters long
 Particle.variable("analogvalue", analogvalue);
 Particle.variable("temp", tempC);

 !// Setup for Sensor on A0
 pinMode(A0, INPUT);
}

void loop()
{
 !// Read the analog value of the sensor
 analogvalue = analogRead(A0);

 !//Convert the reading into degrees Celsius
 tempC = (((analogvalue * 3.3)/4095) - 0.5) * 100;
 delay(200);
}

What it does:

Expose a firmware variable to the cloud

Why it’s cool:

✴Can be fetched via the Device Cloud API

✴Viewable from the Device Console

Usage notes:

✴20 variables max.

✴12 character limit per variable name

PARTICLE.VARIABLE()

int analogvalue = 0;
double tempC = 0;

void setup()
{
 !// variable name max length is 12 characters long
 Particle.variable("analogvalue", analogvalue);
 Particle.variable("temp", tempC);

 !// Setup for Sensor on A0
 pinMode(A0, INPUT);
}

void loop()
{
 !// Read the analog value of the sensor
 analogvalue = analogRead(A0);

 !//Convert the reading into degrees Celsius
 tempC = (((analogvalue * 3.3)/4095) - 0.5) * 100;
 delay(200);
}

What it does:

Expose a firmware variable to the cloud

Why it’s cool:

✴Can be fetched via the Device Cloud API

✴Viewable from the Device Console

Usage notes:

✴20 variables max.

✴12 character limit per variable name

EXAMPLE REQUEST IN TERMINAL
Device ID is 0123456789abcdef
Your access token is 123412341234
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
analogvalue?access_token=123412341234"
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
temp?access_token=123412341234"

In return you'll get something like this:
960
27.44322344322344

PARTICLE.FUNCTION()

What it does:

Expose a firmware function to the cloud

Why it's cool:

✴Can be called via the Device Cloud API

✴Callable from the Device Console

Usage notes:

✴15 functions max.

✴12 character limit per function name

int togglePump(String command);

void setup()
{
 !// register the cloud function
 Particle.function("togglePump", togglePump);
}

!// this function automagically gets called upon a matching
POST request
int togglePump(String command)
{
 if (command !== "on")
 {
 activateWaterPump();
 }
 else
 {
 deactivatePump();
 }

 return 1;
}

PARTICLE.FUNCTION()

What it does:

Expose a firmware function to the cloud

Why it's cool:

✴Can be called via the Device Cloud API

✴Callable from the Device Console

Usage notes:

✴15 functions max.

✴12 character limit per function name

int togglePump(String command);

void setup()
{
 !// register the cloud function
 Particle.function("togglePump", togglePump);
}

!// this function automagically gets called upon a matching
POST request
int togglePump(String command)
{
 if (command !== "on")
 {
 activateWaterPump();
 }
 else
 {
 deactivatePump();
 }

 return 1;
}

API Call
GET /v1/devices/{DEVICE_ID}/{VARIABLE}

EXAMPLE REQUEST IN TERMINAL
Device ID is 0123456789abcdef
Your access token is 123412341234
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
analogvalue?access_token=123412341234"
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
temp?access_token=123412341234"

In return you'll get something like this:
960
27.44322344322344

PARTICLE.PUBLISH()

double tempC = 0;

void setup()
{
 Particle.variable("temp", tempC);

 pinMode(A0, INPUT);
}

void loop()
{
 analogvalue = analogRead(A0);
 tempC = (((analogvalue * 3.3) / 4095) - 0.5) * 100;

 if (tempC > 120)
 {
 Particle.publish("temp/critical", tempC);
 }
 else if (tempC > 80)
 {
 Particle.publish("temp/warning", tempC);
 }
}

What it does:

Publish an event that will be forwarded to
all registered listeners.

Why it’s cool:

✴Enables device-to-device communication

✴Viewable from the Device Console

Usage notes:

✴63 characters max for event names

✴Events are public by default, but can be
marked as private.

PARTICLE.PUBLISH()

double tempC = 0;

void setup()
{
 Particle.variable("temp", tempC);

 pinMode(A0, INPUT);
}

void loop()
{
 analogvalue = analogRead(A0);
 tempC = (((analogvalue * 3.3) / 4095) - 0.5) * 100;

 if (tempC > 120)
 {
 Particle.publish("temp/critical", tempC);
 }
 else if (tempC > 80)
 {
 Particle.publish("temp/warning", tempC);
 }
}

What it does:

Publish an event that will be forwarded to
all registered listeners.

Why it’s cool:

✴Enables device-to-device communication

✴Viewable from the Device Console

Usage notes:

✴63 characters max for event names

✴Events are public by default, but can be
marked as private.

API Call
GET /v1/events/{EVENT_NAME}

EXAMPLE REQUEST
curl -H "Authorization: Bearer {ACCESS_TOKEN_GOES_HERE}" \
https:!//api.particle.io/v1/events/temp/critical

Will return a stream that echoes text when your event is
published
event: temp/critical
data:
{"data":"125","ttl":"60","published_at":"2018-05-28T19:20:34
.638Z",
 "deviceid":"0123456789abcdef"}

PARTICLE.SUBSCRIBE()

void setup()
{
 !// Subscribes to temp/warning AND temp/critical
 Particle.subscribe("temp", handleTemp);
}

void handleTemp(const char *event, const char *data)
{
 double temp = extractTemp(data);

 if (temp > 120)
 {
 deactivatePump();
 }
 else if (temp > 80)
 {
 reducePumpSpeed();
 }
}

What it does:

Subscribe to events published by devices.

Why it’s cool:

✴Enables device-to-device communication

✴Non-IoT devices can also trigger events

Usage notes:

✴4 subscribe handlers per device, max

✴Subscriptions work like prefix filters, meaning
you can capture multiple publish events via
clever naming.

PARTICLE PRIMITIVES

DEMO

WORKING WITH PARTICLE PRIMITIVES

INTRODUCING PARTICLE GEN3 & MESH

MESH PUBLISH & SUBSCRIBE

BLUETOOTH & NFC

MANAGING DEVICES FROM THE CONSOLE

Mesh enabled, next generation

» Feather form factor

» OpenThread-based Mesh

Nordic nRF52840 SoC

» ARM Cortex-M4F 32-bit

» 1MB flash, 256KB RAM

» IEEE 802.15.4-2006: 250

» Bluetooth 5: 2 Mbps, 1 Mbps,
500 Kbps, 125 Kbps

» ARM TrustZone Cryptographic
security module

» NFC-A tag

Argon
» Wi-Fi + BLE +Mesh
» Wi-Fi endpoint or mesh gateway
» Starts at $25

Xenon
» BLE + Mesh
» Mesh endpoint
» Starts at $15

Boron
» LTE-M1 + BLE + Mesh
» Cellular endpoint or mesh gateway
» Starts at $49

ESP32 Wi-Fi coprocessor

» On-board 4MB flash for ESP32

» 802.11 b/g/n support

» 802.11 n (2.4 GHz), up to 150
Mbps

Device Features

» On-board add’l 2MB SPI flash

» 20 mixed signal GPIO (6 x
Analog, 8 x PWM), UART, I2C,
SPI

» Integrated Li-Po charging and
battery connector

» JTAG (SWD) Connector

Argon
» Wi-Fi + BLE +Mesh
» Wi-Fi endpoint or mesh gateway
» Starts at $25

Boron
» LTE-M1 + BLE + Mesh
» Cellular endpoint or mesh gateway
» Starts at $49

u-blox SARA R410 LTE Modem

» LTE CAT M1/ NB1 module with
global hardware support
(MVNO support for US only)

» 3GPP Release 13 LTE Cat M1

Device Features

» On-board add’l 2MB SPI flash

» 20 mixed signal GPIO (6 x
Analog, 8 x PWM), UART, I2C,
SPI

» Integrated Li-Po charging and
battery connector

» JTAG (SWD) Connector

Mesh networking with OpenThread

» IEEE 802.15.4-2006: 250

» Bluetooth 5: 2 Mbps, 1 Mbps, 500
Kbps, 125 Kbps

Xenon
» BLE + Mesh
» Mesh endpoint
» Starts at $15

NEST: FROM THERMOSTATS TO SMOKE DETECTORS

NEST: FROM THERMOSTATS TO SMOKE DETECTORS

NEST: FROM THERMOSTATS TO SMOKE DETECTORS

NEST: FROM THERMOSTATS TO SMOKE DETECTORS

NEST: FROM THERMOSTATS TO SMOKE DETECTORS

NEST: FROM THERMOSTATS TO SMOKE DETECTORS

THE THREAD GROUP & CONTRIBUTING OPENTHREAD

WHAT IS THREAD?

✴IPv6-based mesh

✴Wireless Personal Area Network

✴No single point of failure

✴Tailored to IoT Scenarios

✴Can be used in concert with Wi-Fi, Cellular and Bluetooth

is a low-power networking protocol

WHY PARTICLE MESH?

Everything you
need to know to

implement
OpenThread

WHY PARTICLE MESH?

WHY PARTICLE MESH?

WHY PARTICLE MESH?

void pong(const char *event, const char *data)
{
 Serial.println("You got a message!");
}

void setup()
{
 Mesh.on();
 Mesh.connect();
}

void loop()
{
 Mesh.publish(“hello-world”, “I’m meshing !”);
 Mesh.subscribe("ping", pong);
}

PARTICLE MESH != BLUETOOTH MESH

PARTICLE MESH != BLUETOOTH MESH

PARTICLE MESH != BLUETOOTH MESH

PARTICLE MESH != WI-FI MESH

OPENTHREAD VS. ZIGBEE, ZWAVE & BT MESH

Operating range 100 ft 35 ft

Max # of devices 232 65k

Data rate 9.6-100 Kb 40-250 Kb

Cloud Connectivity Gateway Gateway

IP-Based Networking No No

Open Standard? No Yes

30 ft 100 ft

Varies300+

1-3 Mb 250 Kb

Smartphone Gateway

No Yes

Yes Yes

Varies

Varies

Router

Yes

No

Wi-Fi Mesh

~32k

MESH DEVICE ROLES

Gateway

MESH DEVICE ROLES

Gateway

Repeater

Repeater

MESH DEVICE ROLES

Gateway

Repeater

Repeater
Endpoint

Endpoint

MESH DEVICE ROLES

Gateway

Repeater

Repeater

Repeater
& Endpoint

Endpoint

Endpoint

GatewayParticle Device Cloud

GatewayParticle Device Cloud

Mesh.publish(“light/on”);

Mesh.subscribe(“light/on”, turnOnLight);

GatewayParticle Device Cloud

GatewayParticle Device Cloud

Mesh.publish(“light/on”);

Mesh.subscribe(“light/on”, turnOnLight);

PARTICLE MESH FUNCTIONS

Listen for events published to the Mesh
network

Mesh.subscribe()

Broadcast an event to all devices in a
Mesh network

Mesh.publish()

MESH.PUBLISH()

double tempC = 0;

void setup()
{
 Particle.variable("temp", tempC);

 pinMode(A0, INPUT);
}

void loop()
{
 analogvalue = analogRead(A0);
 tempC = (((analogvalue * 3.3) / 4095) - 0.5) * 100;

 if (tempC > 120)
 {
 Mesh.publish("temp/critical", tempC);
 }
 else if (tempC > 80)
 {
 Mesh.publish(“temp/warning", tempC);
 }
}

What it does:

Publish an event that will be forwarded to
all registered listeners on the local Particle
mesh network.

Why it’s cool:

✴Enables mesh network communication

✴Works even when the network isn’t connected
to the cloud

Usage notes:

✴63 characters max for event names

MESH.SUBSCRIBE()

void setup()
{
 !// Subscribes to temp/warning AND temp/critical
 Mesh.subscribe(“temp", handleTemp);
}

void handleTemp(const char *event, const char *data)
{
 double temp = extractTemp(data);

 if (temp > 120)
 {
 deactivatePump();
 }
 else if (temp > 80)
 {
 reducePumpSpeed();
 }
}

What it does:

Subscribe to events published by devices
on the local mesh network.

Why it’s cool:

✴Enables mesh network communication

✴Works even when the network isn’t connected
to the cloud

Usage notes:

✴Subscriptions work like prefix filters, meaning
you can capture multiple publish events via
clever naming.

LOCAL MESH PUB/SUB VS. PARTICLE CLOUD PUB/SUB

Mesh Pub/Sub is for local messages

Use Mesh Pub/Sub When:
✴You need to communicate between

devices only on a mesh
✴You need messages to be sent as fast as

possible
✴You need to communicate between

devices when a connection to the cloud is
unavailable.

✴ It’s ok that not every message is delivered.

Particle Pub/Sub is for everything else

Use Particle Pub/Sub When:
✴You need to communicate between mesh

networks or with devices not on a mesh
network

✴ You’re publishing events to webhooks or
cloud integrations (Azure, Google Cloud,
etc.)

✴You need some QOS in message delivery
(retry attempts, etc.)

MESH PUBLISH & SUBSCRIBE

DEMO

WORKING WITH PARTICLE PRIMITIVES

INTRODUCING PARTICLE GEN3 & MESH

MESH PUBLISH & SUBSCRIBE

BLUETOOTH & NFC

MANAGING DEVICES FROM THE CONSOLE

BLUETOOTH LOW ENERGY (BLE)

EXAMPLE: BROADCASTER & OBSERVER

uint8_t buf[BLE_MAX_ADV_DATA_LEN];
size_t offset = 0;

!// Company ID (0xffff internal use/testing)
buf[offset!++] = 0xff;
buf[offset!++] = 0xff;

!// Internal packet type.
buf[offset!++] = 0x55;

memcpy(&buf[offset], &battVoltage, 4);
offset += 4;

BleAdvertisingData advData;
advData.appendCustomData(buf, offset);

BLE.setAdvertisingInterval(130);
BLE.advertise(&advData);

const size_t SCAN_RESULT_MAX = 30;
BleScanResult scanResults[SCAN_RESULT_MAX];

BLE.setScanTimeout(50);
int count = BLE.scan(scanResults, SCAN_RESULT_MAX);

for (int i = 0; i < count; i!++)
{
 uint8_t buf[BLE_MAX_ADV_DATA_LEN];
 size_t len;

 len = scanResults[i].advertisingData.get(
 BleAdvertisingDataType!::MANUFACTURER_SPECIFIC_DATA, buf,
 BLE_MAX_ADV_DATA_LEN);
 if (len !== 7)
 {
 if (buf[0] !== 0xff !&& buf[1] !== 0xff !&& buf[2] !== 0x55)
 {
 float voltage;
 memcpy(&voltage, &buf[3], 4);

 Log.info("Voltage: %f", voltage);
 }
 }
}

Broadcaster advertises battery voltage… …which the observer can read.

NEAR FIELD COMMUNICATION (NFC)

NFC.on();

NFC.setText("Battery voltage: " +
 String(battVoltage, 2) + "%", "en");
NFC.update();

NFC = for sending small amounts of
data to mobile apps close by (< 3
inches)
» All Gen 3 devices can emulate an

NFC tags (Device OS 1.3.0+
required)

NEAR FIELD COMMUNICATION (NFC)

NFC.on();

NFC.setText("Battery voltage: " +
 String(battVoltage, 2) + "%", "en");
NFC.update();

NFC = for sending small amounts of
data to mobile apps close by (< 3
inches)
» All Gen 3 devices can emulate an

NFC tags (Device OS 1.3.0+
required)

BLE AND NFC: WHEN SHOULD I USE THEM?

Use BLE When:

✴You want to communicate between devices
NOT on the same local network

✴You want Particle devices to communicate
with other BLE sensors (heart-rate
monitors, environmental sensors, etc.)

Use NFC When:

✴You want Particle devices to share sensor
data with nearby mobile apps.

✴To launch a Particle-powered mobile app
experience on Android phones.

✴To share links to docs, guides, and other
web-based resources related to your
product.

BLE & NFC

DEMO

LET’S START PROGRAMMING SOME DEVICES!

