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CONSOLE.PARTICLE.IO

All your devicesTheir type and nameAnd the last time they 
appeared online



REAL-TIME EVENT LOGS
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REMOTE DIAGNOSTICS



VIEWING CLOUD VARIABLES AND CALLING CLOUD FUNCTIONS
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PARTICLE CLOUD FUNCTIONS

Call a function, remotely 
Particle.function()

Fetch a variable, remotely 
Particle.variable()

Listen for events 
Particle.subscribe()

Send an event to the cloud 
Particle.publish()



PARTICLE.VARIABLE()

int analogvalue = 0; 
double tempC = 0; 

void setup() 
{ 
  !// variable name max length is 12 characters long 
  Particle.variable("analogvalue", analogvalue); 
  Particle.variable("temp", tempC); 

  !// Setup for Sensor on A0 
  pinMode(A0, INPUT); 
} 

void loop() 
{ 
  !// Read the analog value of the sensor 
  analogvalue = analogRead(A0); 
   
  !//Convert the reading into degrees Celsius 
  tempC = (((analogvalue * 3.3)/4095) - 0.5) * 100; 
  delay(200); 
}

What it does: 

Expose a firmware variable to the cloud 

Why it’s cool: 

✴Can be fetched via the Device Cloud API 

✴Viewable from the Device Console 

Usage notes: 

✴20 variables max. 

✴12 character limit per variable name 



PARTICLE.VARIABLE()

int analogvalue = 0; 
double tempC = 0; 

void setup() 
{ 
  !// variable name max length is 12 characters long 
  Particle.variable("analogvalue", analogvalue); 
  Particle.variable("temp", tempC); 

  !// Setup for Sensor on A0 
  pinMode(A0, INPUT); 
} 

void loop() 
{ 
  !// Read the analog value of the sensor 
  analogvalue = analogRead(A0); 
   
  !//Convert the reading into degrees Celsius 
  tempC = (((analogvalue * 3.3)/4095) - 0.5) * 100; 
  delay(200); 
}

What it does: 

Expose a firmware variable to the cloud 

Why it’s cool: 

✴Can be fetched via the Device Cloud API 

✴Viewable from the Device Console 

Usage notes: 

✴20 variables max. 

✴12 character limit per variable name 

# EXAMPLE REQUEST IN TERMINAL 
# Device ID is 0123456789abcdef 
# Your access token is 123412341234 
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
analogvalue?access_token=123412341234" 
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
temp?access_token=123412341234" 

# In return you'll get something like this: 
960 
27.44322344322344 



PARTICLE.FUNCTION()

What it does: 

Expose a firmware function to the cloud 

Why it's cool: 

✴Can be called via the Device Cloud API 

✴Callable from the Device Console 

Usage notes: 

✴15 functions max. 

✴12 character limit per function name 

int togglePump(String command); 

void setup() 
{ 
  !// register the cloud function 
  Particle.function("togglePump", togglePump); 
} 

!// this function automagically gets called upon a matching 
POST request 
int togglePump(String command) 
{ 
  if (command !== "on") 
  { 
    activateWaterPump(); 
  } 
  else 
  { 
    deactivatePump(); 
  } 

  return 1; 
}



PARTICLE.FUNCTION()

What it does: 

Expose a firmware function to the cloud 

Why it's cool: 

✴Can be called via the Device Cloud API 

✴Callable from the Device Console 

Usage notes: 

✴15 functions max. 

✴12 character limit per function name 

int togglePump(String command); 

void setup() 
{ 
  !// register the cloud function 
  Particle.function("togglePump", togglePump); 
} 

!// this function automagically gets called upon a matching 
POST request 
int togglePump(String command) 
{ 
  if (command !== "on") 
  { 
    activateWaterPump(); 
  } 
  else 
  { 
    deactivatePump(); 
  } 

  return 1; 
}

# API Call 
# GET /v1/devices/{DEVICE_ID}/{VARIABLE} 

# EXAMPLE REQUEST IN TERMINAL 
# Device ID is 0123456789abcdef 
# Your access token is 123412341234 
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
analogvalue?access_token=123412341234" 
curl "https:!//api.particle.io/v1/devices/0123456789abcdef/
temp?access_token=123412341234" 

# In return you'll get something like this: 
960 
27.44322344322344 



PARTICLE.PUBLISH()

double tempC = 0; 

void setup() 
{ 
  Particle.variable("temp", tempC); 

  pinMode(A0, INPUT); 
} 

void loop() 
{ 
  analogvalue = analogRead(A0); 
  tempC = (((analogvalue * 3.3) / 4095) - 0.5) * 100; 

  if (tempC > 120) 
  { 
    Particle.publish("temp/critical", tempC); 
  } 
  else if (tempC > 80) 
  { 
    Particle.publish("temp/warning", tempC); 
  } 
}

What it does: 

Publish an event that will be forwarded to 
all registered listeners. 

Why it’s cool: 

✴Enables device-to-device communication 

✴Viewable from the Device Console 

Usage notes: 

✴63 characters max for event names 

✴Events are public by default, but can be 
marked as private.



PARTICLE.PUBLISH()

double tempC = 0; 

void setup() 
{ 
  Particle.variable("temp", tempC); 

  pinMode(A0, INPUT); 
} 

void loop() 
{ 
  analogvalue = analogRead(A0); 
  tempC = (((analogvalue * 3.3) / 4095) - 0.5) * 100; 

  if (tempC > 120) 
  { 
    Particle.publish("temp/critical", tempC); 
  } 
  else if (tempC > 80) 
  { 
    Particle.publish("temp/warning", tempC); 
  } 
}

What it does: 

Publish an event that will be forwarded to 
all registered listeners. 

Why it’s cool: 

✴Enables device-to-device communication 

✴Viewable from the Device Console 

Usage notes: 

✴63 characters max for event names 

✴Events are public by default, but can be 
marked as private.

# API Call 
# GET /v1/events/{EVENT_NAME} 

# EXAMPLE REQUEST 
curl -H "Authorization: Bearer {ACCESS_TOKEN_GOES_HERE}" \ 
https:!//api.particle.io/v1/events/temp/critical 

# Will return a stream that echoes text when your event is 
published 
event: temp/critical 
data: 
{"data":"125","ttl":"60","published_at":"2018-05-28T19:20:34
.638Z", 
  "deviceid":"0123456789abcdef"} 



PARTICLE.SUBSCRIBE()

void setup() 
{ 
  !// Subscribes to temp/warning AND temp/critical 
  Particle.subscribe("temp", handleTemp); 
} 

void handleTemp(const char *event, const char *data) 
{ 
  double temp = extractTemp(data); 

  if (temp > 120) 
  { 
    deactivatePump(); 
  } 
  else if (temp > 80) 
  { 
    reducePumpSpeed(); 
  } 
}

What it does: 

Subscribe to events published by devices. 

Why it’s cool: 

✴Enables device-to-device communication 

✴Non-IoT devices can also trigger events 

Usage notes: 

✴4 subscribe handlers per device, max 

✴Subscriptions work like prefix filters, meaning 
you can capture multiple publish events via 
clever naming.
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Mesh enabled, next generation 

» Feather form factor 

» OpenThread-based Mesh 

Nordic nRF52840 SoC 

» ARM Cortex-M4F 32-bit 

» 1MB flash, 256KB RAM 

» IEEE 802.15.4-2006: 250 

» Bluetooth 5: 2 Mbps, 1 Mbps, 
500 Kbps, 125 Kbps 

» ARM TrustZone Cryptographic 
security module 

» NFC-A tag

Argon 
» Wi-Fi + BLE +Mesh 
» Wi-Fi endpoint or mesh gateway 
» Starts at $25

Xenon 
» BLE + Mesh 
» Mesh endpoint 
» Starts at $15

Boron  
» LTE-M1 + BLE + Mesh 
» Cellular endpoint or mesh gateway  
» Starts at $49



ESP32 Wi-Fi coprocessor 

» On-board 4MB flash for ESP32 

» 802.11 b/g/n support 

» 802.11 n (2.4 GHz), up to 150 
Mbps  

Device Features 

» On-board add’l 2MB SPI flash 

» 20 mixed signal GPIO (6 x 
Analog, 8 x PWM), UART, I2C, 
SPI 

» Integrated Li-Po charging and 
battery connector 

» JTAG (SWD) Connector 

Argon 
» Wi-Fi + BLE +Mesh 
» Wi-Fi endpoint or mesh gateway 
» Starts at $25



Boron  
» LTE-M1 + BLE + Mesh 
» Cellular endpoint or mesh gateway  
» Starts at $49

u-blox SARA R410 LTE Modem 

» LTE CAT M1/ NB1 module with 
global hardware support 
(MVNO support for US only) 

» 3GPP Release 13 LTE Cat M1  

Device Features 

» On-board add’l 2MB SPI flash 

» 20 mixed signal GPIO (6 x 
Analog, 8 x PWM), UART, I2C, 
SPI 

» Integrated Li-Po charging and 
battery connector 

» JTAG (SWD) Connector 



Mesh networking with OpenThread 

» IEEE 802.15.4-2006: 250 

» Bluetooth 5: 2 Mbps, 1 Mbps, 500 
Kbps, 125 Kbps 

Xenon 
» BLE + Mesh 
» Mesh endpoint 
» Starts at $15



NEST: FROM THERMOSTATS TO SMOKE DETECTORS
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NEST: FROM THERMOSTATS TO SMOKE DETECTORS



THE THREAD GROUP & CONTRIBUTING OPENTHREAD



WHAT IS THREAD?

✴IPv6-based mesh 

✴Wireless Personal Area Network 

✴No single point of failure 

✴Tailored to IoT Scenarios 

✴Can be used in concert with Wi-Fi, Cellular and Bluetooth

is a low-power networking protocol



WHY PARTICLE MESH?

Everything you 
need to know to 

implement 
OpenThread



WHY PARTICLE MESH?
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WHY PARTICLE MESH?

void pong(const char *event, const char *data) 
{ 
  Serial.println("You got a message!"); 
} 

void setup() 
{ 
  Mesh.on(); 
  Mesh.connect(); 
} 

void loop() 
{ 
  Mesh.publish(“hello-world”, “I’m meshing !”); 
  Mesh.subscribe("ping", pong); 
} 





PARTICLE MESH != BLUETOOTH MESH



PARTICLE MESH != BLUETOOTH MESH



PARTICLE MESH != BLUETOOTH MESH

PARTICLE MESH != WI-FI MESH



OPENTHREAD VS. ZIGBEE, ZWAVE & BT MESH

Operating range 100 ft 35 ft

Max # of devices 232 65k

Data rate 9.6-100 Kb 40-250 Kb

Cloud Connectivity Gateway Gateway

IP-Based Networking No No

Open Standard? No Yes

30 ft 100 ft

Varies300+

1-3 Mb 250 Kb

Smartphone Gateway

No Yes

Yes Yes

Varies

Varies

Router

Yes

No

Wi-Fi Mesh

~32k



MESH DEVICE ROLES
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MESH DEVICE ROLES

Gateway

Repeater

Repeater



MESH DEVICE ROLES

Gateway

Repeater

Repeater
Endpoint

Endpoint



MESH DEVICE ROLES

Gateway

Repeater

Repeater

Repeater  
& Endpoint

Endpoint

Endpoint



GatewayParticle Device Cloud



GatewayParticle Device Cloud

Mesh.publish(“light/on”);

Mesh.subscribe(“light/on”, turnOnLight);



GatewayParticle Device Cloud



GatewayParticle Device Cloud

Mesh.publish(“light/on”);

Mesh.subscribe(“light/on”, turnOnLight);



PARTICLE MESH FUNCTIONS

Listen for events published to the Mesh 
network 

Mesh.subscribe()

Broadcast an event to all devices in a 
Mesh network 

Mesh.publish()



MESH.PUBLISH()

double tempC = 0; 

void setup() 
{ 
  Particle.variable("temp", tempC); 

  pinMode(A0, INPUT); 
} 

void loop() 
{ 
  analogvalue = analogRead(A0); 
  tempC = (((analogvalue * 3.3) / 4095) - 0.5) * 100; 

  if (tempC > 120) 
  { 
    Mesh.publish("temp/critical", tempC); 
  } 
  else if (tempC > 80) 
  { 
    Mesh.publish(“temp/warning", tempC); 
  } 
}

What it does: 

Publish an event that will be forwarded to 
all registered listeners on the local Particle 
mesh network. 

Why it’s cool: 

✴Enables mesh network communication 

✴Works even when the network isn’t connected 
to the cloud 

Usage notes: 

✴63 characters max for event names



MESH.SUBSCRIBE()

void setup() 
{ 
  !// Subscribes to temp/warning AND temp/critical 
  Mesh.subscribe(“temp", handleTemp); 
} 

void handleTemp(const char *event, const char *data) 
{ 
  double temp = extractTemp(data); 

  if (temp > 120) 
  { 
    deactivatePump(); 
  } 
  else if (temp > 80) 
  { 
    reducePumpSpeed(); 
  } 
}

What it does: 

Subscribe to events published by devices 
on the local mesh network. 

Why it’s cool: 

✴Enables mesh network communication 

✴Works even when the network isn’t connected 
to the cloud 

Usage notes: 

✴Subscriptions work like prefix filters, meaning 
you can capture multiple publish events via 
clever naming.



LOCAL MESH PUB/SUB VS. PARTICLE CLOUD PUB/SUB

Mesh Pub/Sub is for local messages 

Use Mesh Pub/Sub When: 
✴You need to communicate between 

devices only on a mesh 
✴You need messages to be sent as fast as 

possible 
✴You need to communicate between 

devices when a connection to the cloud is 
unavailable. 

✴ It’s ok that not every message is delivered.

Particle Pub/Sub is for everything else 

Use Particle Pub/Sub When: 
✴You need to communicate between mesh 

networks or with devices not on a mesh 
network 

✴ You’re publishing events to webhooks or 
cloud integrations (Azure, Google Cloud, 
etc.) 

✴You need some QOS in message delivery 
(retry attempts, etc.)



MESH PUBLISH & SUBSCRIBE

DEMO
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BLUETOOTH LOW ENERGY (BLE)



EXAMPLE: BROADCASTER & OBSERVER

uint8_t buf[BLE_MAX_ADV_DATA_LEN]; 
size_t offset = 0; 

!// Company ID (0xffff internal use/testing) 
buf[offset!++] = 0xff; 
buf[offset!++] = 0xff; 

!// Internal packet type. 
buf[offset!++] = 0x55; 

memcpy(&buf[offset], &battVoltage, 4); 
offset += 4; 

BleAdvertisingData advData; 
advData.appendCustomData(buf, offset); 

BLE.setAdvertisingInterval(130); 
BLE.advertise(&advData);

const size_t SCAN_RESULT_MAX = 30; 
BleScanResult scanResults[SCAN_RESULT_MAX]; 

BLE.setScanTimeout(50); 
int count = BLE.scan(scanResults, SCAN_RESULT_MAX); 

for (int i = 0; i < count; i!++) 
{ 
  uint8_t buf[BLE_MAX_ADV_DATA_LEN]; 
  size_t len; 

  len = scanResults[i].advertisingData.get( 
    BleAdvertisingDataType!::MANUFACTURER_SPECIFIC_DATA, buf,  
    BLE_MAX_ADV_DATA_LEN); 
  if (len !== 7) 
  { 
    if (buf[0] !== 0xff !&& buf[1] !== 0xff !&& buf[2] !== 0x55) 
    { 
      float voltage; 
      memcpy(&voltage, &buf[3], 4); 

      Log.info("Voltage: %f", voltage); 
    } 
  } 
}

Broadcaster advertises battery voltage… …which the observer can read.



NEAR FIELD COMMUNICATION (NFC)

NFC.on(); 

NFC.setText("Battery voltage: " +  
  String(battVoltage, 2) + "%", "en"); 
NFC.update();

NFC = for sending small amounts of 
data to mobile apps close by (< 3 
inches) 
» All Gen 3 devices can emulate an 

NFC tags (Device OS 1.3.0+ 
required) 



NEAR FIELD COMMUNICATION (NFC)

NFC.on(); 

NFC.setText("Battery voltage: " +  
  String(battVoltage, 2) + "%", "en"); 
NFC.update();

NFC = for sending small amounts of 
data to mobile apps close by (< 3 
inches) 
» All Gen 3 devices can emulate an 

NFC tags (Device OS 1.3.0+ 
required) 



BLE AND NFC: WHEN SHOULD I USE THEM?

Use BLE When: 

✴You want to communicate between devices 
NOT on the same local network 

✴You want Particle devices to communicate 
with other BLE sensors (heart-rate 
monitors, environmental sensors, etc.) 

Use NFC When: 

✴You want Particle devices to share sensor 
data with nearby mobile apps. 

✴To launch a Particle-powered mobile app 
experience on Android phones. 

✴To share links to docs, guides, and other 
web-based resources related to your 
product.



BLE & NFC

DEMO



LET’S START PROGRAMMING SOME DEVICES!


