

TEST REPORT

Applicant	Particle Industries,Inc
Address	325 9th Street, San Francisco, CA 94103, United States Of America

Manufacturer or Supplier	Particle Industries,Inc
Address	325 9th Street, San Francisco, CA 94103, United States Of America
Product	Photon 2
Brand Name	Particle
Model	PHN2
Additional Model & Model Difference	N/A
Date of tests	Oct. 27, 2022 ~ Nov. 07, 2022

The tests have been carried out according to the requirements of the following standard:

- □ Canada RSS-Gen Issue 5 (2021-02)

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Tested by Lucas Chen	Approved by Glyn He
Project Engineer / EMC Department	Assistant Manager / EMC Department

Date: Mar. 20, 2023

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided use. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

REL	EASE (CONTROL RECORD	3
1	SUMM	ARY OF TEST RESULTS	4
2	MEAS	UREMENT UNCERTAINTY	4
3	GENE	RAL INFORMATION	5
3.1	GENI	ERAL DESCRIPTION OF EUT	5
3.2	DESC	CRIPTION OF TEST MODES	7
	3.2.1.	CONFIGURATION OF SYSTEM UNDER TEST	8
	3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	8
3.3	GENI	ERAL DESCRIPTION OF APPLIED STANDARDS	9
3.4	DESC	CRIPTION OF SUPPORT UNITS	9
4	TEST	TYPES AND RESULTS	. 10
4.1	CON	DUCTED EMISSION MEASUREMENT	. 10
	4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	. 10
	4.1.2	TEST INSTRUMENTS	. 10
	4.1.3	TEST PROCEDURES	11
	4.1.4	DEVIATION FROM TEST STANDARD	11
	4.1.5	TEST SETUP	. 12
	4.1.6	EUT OPERATING CONDITIONS	. 12
	4.1.7	TEST RESULTS	. 13
4.2	RADI	ATED EMISSION MEASUREMENT	. 15
	4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	. 15
	4.2.2	TEST INSTRUMENTS	. 16
	4.2.3	TEST PROCEDURES	. 17
	4.2.4	DEVIATION FROM TEST STANDARD	. 17
	4.2.5	TEST SETUP	. 18
	4.2.6	EUT OPERATING CONDITIONS	. 19
	4.2.7	TEST RESULTS	. 20
4	PHOTO	OGRAPHS OF THE TEST CONFIGURATION	. 22
5	APPE	NDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE E	UT
	ву тн	E LAB	. 23

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

Fax: +86 769 8593 1080 Email: customerservice.dg@bureauveritas.com

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
IC2202WDG0092-2	Original release	May 19, 2022
IC2209WDG0276-2	Based on the original report IC2202WDG0092-2, changed the applicant/manufacturer address, product name, model number and added the debugging base, it needed to be retested conducted emission and radiated emission (below 1GHz) after engineer evaluated.	Mar. 20, 2023

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: RSS-247; RSS-Gen					
Standard	Standard Test Type and Limit Result Remark				
RSS-Gen	rest type and Emili	ricsuit	Hemark		
8.8	AC Power Conducted Emission	PASS	Meet the requirement of limit		
8.9 Table 5	Transmitter Radiated Emissions (Below 1GHz)	PASS	Meet the requirement of limit.		

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	3.05dB
Radiated emissions	9KHz ~ 30MHz	2.16dB
naulaleu emissions	30MHz ~ 1GMHz	3.82dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Photon 2	
BRAND	Particle	
MODEL NO.	PHN2	
ADDITIONAL MODEL	N/A	
IC	20127-P2	
NOMINAL VOLTAGE	5.0Vdc (Adapter) 3.7Vdc (Li-ion, Battery)	
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM	
MODULATION TECHNOLOGY	DSSS, OFDM	
OPERATING FREQUENCY	2412MHz ~ 2462MHz for 11b/g/n(HT20)	
PEAK OUTPUT POWER	376.704mW (Measured Max.)	
ANTENNA TYPE	PCB Antenna, 2.41dBi Gain External PCB Antenna, 1.55dBi Gain	
I/O PORTS	Refer to user's manual	
CABLE SUPPLIED	Refer to user's manual	
PRODUCT SW/HW	v1.0/ v1.0.0.	
RADIO SW/HW	v1.0/ v1.0	
TEST SW VERSION	AmebaD_mptool_2V2	
RF POWER SETTING IN TEST SW	See note 7	

NOTES:

- 1. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
- 2. Please refer to the EUT photo document (Reference No.: 2209WDG0276-1) for detailed product photo.
- For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 4. Conformity Assessment Body Identifier (CABID): CN0026
- 5. The Photon 2 uses two antennas, but couldn't transmit simultaneously, the antenna type and gain are different, and the antenna port is the same, so the RF conducted output power is the same. EIRP, Radiated emission and conducted emission have been evaluated for both antennas respectively, EIRP data for both antennas are shown in the report, but only the worst antenna data (PCB antenna) is shown in the test report for the radiation spurious emission test and conducted emission.

6. The EUT provides completed transmitters and receivers, the EUT uses only one antenna at any time.

MODULATION MODE	TX FUNCTION
802.11b	1TX/1RX
802.11g	1TX/1RX
802.11n (HT20)	1TX/1RX

7. By means of test software provided by manufacturer, the power levels during the tests were set according to the following codes:

802.11b		802.11g		802.11n(HT20)	
Channel	Power Setting	Channel	Power Setting	Channel	Power Setting
1	115	1	92	1	92
6	115	6	92	6	92
11	115	11	100	11	100

3.2 DESCRIPTION OF TEST MODES

11 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

		<u> </u>	
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

3.2.1. CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photographs of the test configuration for reference.

3.2.2 Test Mode Applicability and tested channel detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, power supply voltage range and antenna ports. The worst case was found when positioned on X axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLICABLE TO			MODE
MODE	RE<1G	RE≥1G	PLC	APCM	MODE
Α	V	-	√	-	Powered by DC 5V from Notebook with wifi(2.4G) link

Where

RE<1G: Radiated Emission below 1GHz

on

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	TESTED CONDITION
Α	WIFI (2.4G) Link

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
Α	802.11b	1 to 11	1	DSSS	DBPSK	1.0

For the test results, only the worst case was shown in test report.

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE<1G 25deg. C, 55%RH		DC 5V from Notebook	Stalker	
PLC	25deg. C, 58%RH	DC 5V from Notebook	Summer	

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

3.3 **GENERAL DESCRIPTION OF APPLIED STANDARDS**

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Canada RSS-247 Issue 2 (2017-02) Canada RSS-Gen Issue 5 (2021-02) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

3.4 **DESCRIPTION OF SUPPORT UNITS**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Notebook	DELL	Inspiron 13-7378	GMSJZD2	N/A
2	Serial port tool	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
	AC Line: Unshielded, Detachable 0.8m; DC Line: Unshielded, Non-detachable 1.8m; USB Cable: Shielded, Detachable, 0.5m
2	N/A

Page 9 of 23

Tel: +86 769 8998 2098

4 TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBμV)			
	Quasi-peak	Average		
0.15 ~ 0.5	66 to 56	56 to 46		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

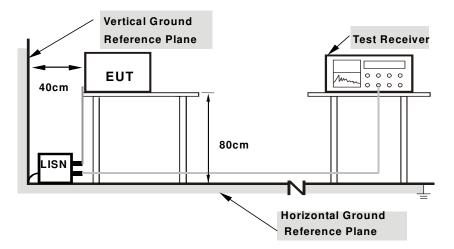
Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Jan. 18,23
Artificial Mains Network	Rohde&Schwarz	ENV216	101173	Jan. 23,23
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	100317	Jan. 18,23
Voltage probe	SCHWARZBECK	TK 9421	TK 9421-176	Aug. 05,23
Coaxial RF Cable	/	CE CABLE	C2310066DG	Jul. 27,23
Test software	ADT	ADT_Cond_V7.3.7	N/A	N/A

NOTES:

- 1. The test was performed in shielded room 553. (Chenwu)
- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

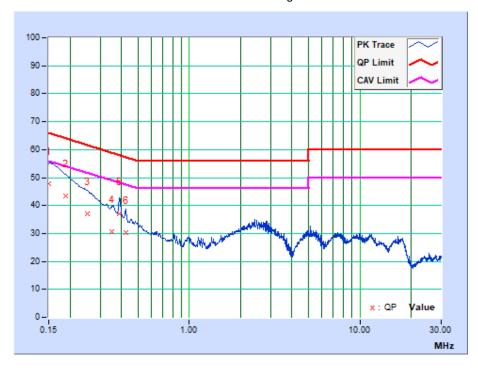
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

4.1.7 TEST RESULTS


CONDUCTED DATA: WIFI Link (Worst-case PCB Antenna)

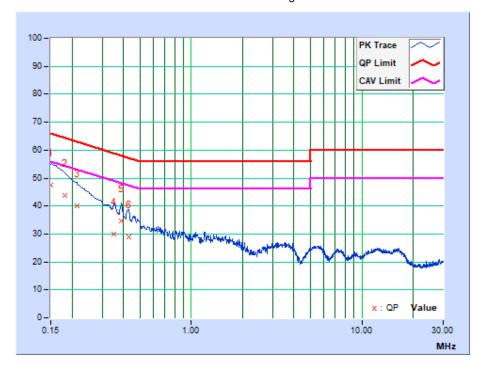
PHASE	Line	6dB BANDWIDTH	9kHz

No	Freq. [MHz]	Corr. Factor	Reading Value [dB (uV)]			n Level (uV)]		nit (uV)]	Maı (d	rgin B)
		(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.82	37.95	10.60	47.77	20.42	66.00	56.00	-18.23	-35.58
2	0.18825	9.84	33.45	7.02	43.29	16.86	64.11	54.11	-20.83	-37.26
3	0.25125	9.87	27.26	12.97	37.13	22.84	61.72	51.72	-24.59	-28.88
4	0.35253	9.90	20.85	14.69	30.75	24.59	58.90	48.90	-28.15	-24.31
5	0.39077	9.90	27.06	23.32	36.96	33.22	58.05	48.05	-21.09	-14.83
6	0.42410	9.91	20.42	16.55	30.33	26.46	57.37	47.37	-27.04	-20.91

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080



PHASE	Neutral	6dB BANDWIDTH	9kHz
-------	---------	---------------	------

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value [dB (uV)]			on Level (uV)]	Lir [dB (nit (uV)]		gin B)
		(ub)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.76	37.79	11.67	47.55	21.43	66.00	56.00	-18.45	-34.57
2	0.18150	9.77	34.06	11.52	43.83	21.29	64.42	54.42	-20.59	-33.13
3	0.21300	9.77	30.36	7.98	40.13	17.75	63.09	53.09	-22.95	-35.33
4	0.35253	9.80	20.04	14.92	29.84	24.72	58.90	48.90	-29.06	-24.18
5	0.38871	9.80	24.80	23.47	34.60	33.27	58.09	48.09	-23.49	-14.82
6	0.42860	9.81	19.09	9.88	28.90	19.69	57.28	47.28	-28.38	-27.59

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in RSS-Gen Section 8.10, must also comply with the radiated emission limits specified in RSS-Gen Section 8.9. as following:

FREQUENCIES (MHz)	Magnetic field strength (H-Field) (μΑ/m)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	6.37/F (F in kHz)	300
0.490 ~ 1.705	63.7/F (F in kHz)	30
1.705 ~ 30.0	0.08	30

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)		
30 ~ 88	100	3		
88 ~ 216	150	3		
216 ~ 960	200	3		
Above 960	500	3		

NOTES:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

4.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESU40	100449	Mar. 07, 23
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV7	102331	May 09, 23
Active Loop Antenna (9KHz -30MHz)	SCHWARZBECK	FMZB 1519B	1519B-045	May 20, 23
Amplifier (9KHz -1GHz)	Burgeon	BPA-530	100210	Mar. 13, 23
Bilog Antenna (20MHz -2GHz)	Teseq	CBL 6111D	30643	May 21, 23
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062558	May 21, 23
Horn Antenna (18GHz -40GHz)	SCHWARZBECK	BBHA 9170	BBHA9170147	May 14, 23
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	NSEMC003	May 22, 23
Test Software	ADT	ADT_Radiated_V 7.6.15.9.2	N/A	N/A
Broadband Preamplifier (1GHz~18GHz)	SCHWARZBECK	BBV9718	305	May 12, 23
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Jan. 10, 23
Test Software	ADT	ADT_Radiated_V 7.6.15.9.2	N/A	N/A
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	N/A

NOTES:

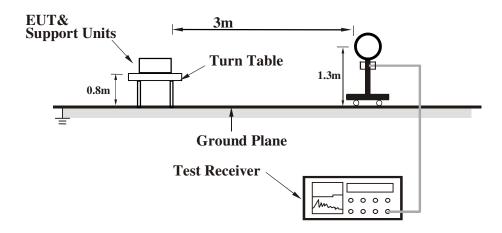
- 1. The test was performed in 966 Chamber. (Chenwu)
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
- 4. The IC test Site Registration No. is 5936A.

4.2.3 TEST PROCEDURES

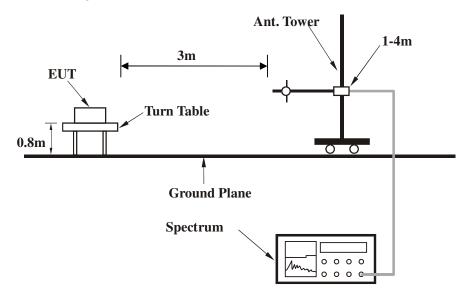
- a. The EUT was placed on the top of a rotating table 1.5 meters (above 1GHz) and 0.8 meters (below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1.3m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTES:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes, the worst-case test configuration was reported on the file test setup photo.


4.2.4 DEVIATION FROM TEST STANDARD

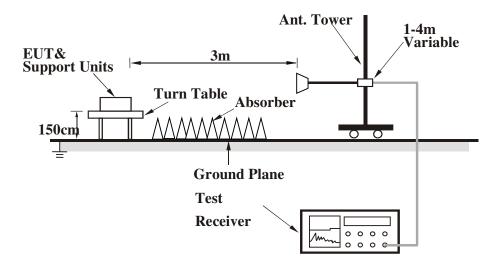
No deviation.



4.2.5 TEST SETUP

Below 30MHz

Below 1GHz test setup



Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080 Email: customerservice.dg@bureauveritas.com

Above 1GHz test setup

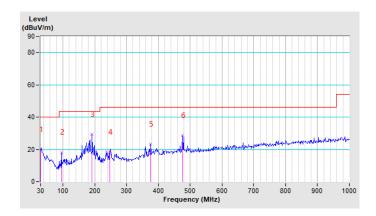
Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT placed them on a testing table.
- Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

4.2.7 TEST RESULTS

BELOW 1GHz DATA: (Worst-case PCB Antenna)

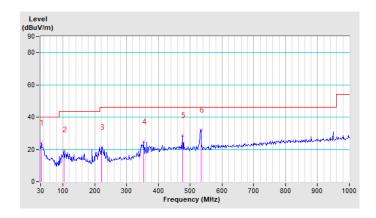

802.11b

CHANNEL	TX Channel 1	DETECTOR FUNCTION	Ougai Baak (OB)
FREQUENCY RANGE	9KHz ~ 1GHz		Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	30.00	19.80 QP	40.00	-20.20	1.00 H	215	37.58	-17.78	
2	95.29	18.10 QP	43.50	-25.40	1.00 H	196	39.55	-21.45	
3	191.67	29.32 QP	43.50	-14.18	1.43 H	272	47.51	-18.19	
4	247.63	18.39 QP	46.00	-27.61	1.00 H	175	34.74	-16.35	
5	375.10	23.19 QP	46.00	-22.81	1.23 H	252	35.72	-12.53	
6	476.14	28.55 QP	46.00	-17.45	1.07 H	236	38.18	-9.63	

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were greater than 20dB margin.
- 4. 9KHz~30MHz have been test and test data more than 20dB margin.
- 5. Margin value = Emission level Limit value.



CHANNEL	TX Channel 1	DETECTOR	Ougai Baak (OB)
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	31.55	23.91 QP	40.00	-16.09	1.99 V	310	41.67	-17.76
2	103.06	19.61 QP	43.50	-23.89	1.88 V	292	39.93	-20.32
3	221.20	21.31 QP	46.00	-24.69	1.71 V	275	38.78	-17.47
4	354.89	24.66 QP	46.00	-21.34	2.00 V	328	37.74	-13.08
5	476.14	28.46 QP	46.00	-17.54	2.00 V	344	38.09	-9.63
6	533.65	32.14 QP	46.00	-13.86	2.00 V	358	40.77	-8.63

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were greater than 20dB margin.
- 4. 9KHz~30MHz have been test and test data more than 20dB margin.
- 5. Margin value = Emission level Limit value.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

5 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080