
1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 1/221

The Particle Raspberry Pi project has been discontinued. You can still follow these
instructions, however there will be no future updates and support is no longer available
for this product.

Overview of API field limits

API Field Prior to 0.8.0 Since 0.8.0 Comment

Variable Key 12 64

Variable Data 622 622

Function Key 12 64

Function Argument 63 622

Publish/Subscribe Event Name 64 64

Publish/Subscribe Event Data 255 622

Note: Spark Core limits remain as-is prior to 0.8.0

Expose a variable through the Cloud so that it can be called with GET

/v1/devices/{DEVICE_ID}/{VARIABLE} . Returns a success value - true when the variable was

registered.

Particle.variable registers a variable, so its value can be retrieved from the cloud in the

future. You only call Particle.variable once per variable, typically passing in a global

variable. You can change the value of the underlying global variable as often as you want;

the value is only retrieved when requested, so simply changing the global variable does

not use any data. You do not call Particle.variable when you change the value.

PARTICLE DEVICE FIRMWARE

Cloud Functions

Particle.variable()

// EXAMPLE USAGE

int analogvalue = 0;
double tempC = 0;
char *message = "my name is particle";
String aString;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 2/221

Up to 20 cloud variables may be registered and each variable name is limited to a

maximum of 12 characters (prior to 0.8.0), 64 characters (since 0.8.0). The Spark Core

remains limited to 12 characters.

Note: Only use letters, numbers, underscores and dashes in variable names. Spaces and

special characters may be escaped by different tools and libraries causing unexpected

results.

When using SYSTEM_THREAD(ENABLED) you must be careful of when you register your

variables. At the beginning of setup(), before you do any lengthy operations, delays, or

things like waiting for a key press, is best. The reason is that variable and function

registrations are only sent up once, about 30 seconds after connecting to the cloud.

Calling Particle.variable after the registration information has been sent does not re-send

the request and the variable will not work.

You will almost never call Particle.variable from loop() (or a function called from loop()).

void setup()
{
 Particle.variable("analogvalue", analogvalue);
 Particle.variable("temp", tempC);
 if (Particle.variable("mess", message)==false)
 {
 // variable not registered!
 }
 Particle.variable("mess2", aString);

 pinMode(A0, INPUT);
}

void loop()
{
 // Read the analog value of the sensor (TMP36)
 analogvalue = analogRead(A0);
 //Convert the reading into degree celcius
 tempC = (((analogvalue * 3.3)/4095) - 0.5) * 100;
 delay(200);
}

https://docs.particle.io/reference/device-os/firmware#system-thread

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 3/221

String variables must be UTF-8 encoded. You cannot send arbitrary binary data or other

character sets like ISO-8859-1. If you need to send binary data you can use a text-based

encoding like Base64.

Prior to 0.4.7 firmware, variables were defined with an additional 3rd parameter to specify

the data type of the variable. From 0.4.7 onward, the system can infer the type from the

actual variable. Additionally, the variable address was passed via the address-of operator

(&). With 0.4.7 and newer, this is no longer required.

This is the pre-0.4.7 syntax:

There are three supported data types:

INT

DOUBLE

STRING (maximum string length is 622 bytes)

int analogvalue = 0;
double tempC = 0;
char *message = "my name is particle";

void setup()
{
 Particle.variable("analogvalue", &analogvalue, INT);
 Particle.variable("temp", &tempC, DOUBLE);
 if (Particle.variable("mess", message, STRING)==false)
 // variable not registered!
 pinMode(A0, INPUT);
}

EXAMPLE REQUEST IN TERMINAL
Device ID is 0123456789abcdef
Your access token is 123412341234
curl "https://api.particle.io/v1/devices/0123456789abcdef/analogvalue?
access_token=123412341234"
curl "https://api.particle.io/v1/devices/0123456789abcdef/temp?
access_token=123412341234"
curl "https://api.particle.io/v1/devices/0123456789abcdef/mess?
access_token=123412341234"

https://github.com/rickkas7/Base64RK

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 4/221

Expose a function through the Cloud so that it can be called with POST

/v1/devices/{DEVICE_ID}/{FUNCTION} .

Particle.function allows code on the device to be run when requested from the cloud API.

You typically do this when you want to control something on your Raspberry Pi, say a LCD

display or a buzzer, or control features in your firmware from the cloud.

Up to 15 cloud functions may be registered and each function name is limited to a

maximum of 12 characters (prior to 0.8.0), 64 characters (since 0.8.0). The Spark Core

remains limited to 12 characters.

Note: Only use letters, numbers, underscores and dashes in function names. Spaces and

special characters may be escaped by different tools and libraries causing unexpected

results. A function callback procedure needs to return as quickly as possible otherwise the

cloud call will timeout.

In order to register a cloud function, the user provides the funcKey , which is the string

name used to make a POST request and a funcName , which is the actual name of the

function that gets called in your app. The cloud function has to return an integer; -1 is

commonly used for a failed function call.

Particle.function()

In return you'll get something like this:
960
27.44322344322344
my name is particle

// SYNTAX
bool success = Particle.function("funcKey", funcName);

// Cloud functions must return int and take one String
int funcName(String extra) {
 return 0;
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 5/221

A cloud function is set up to take one argument of the String datatype. This argument

length is limited to a max of 63 characters (prior to 0.8.0), 622 characters (since 0.8.0). The

Spark Core remains limited to 63 characters. The String is UTF-8 encoded.

When using SYSTEM_THREAD(ENABLED) you must be careful of when you register your

functions. At the beginning of setup(), before you do any lengthy operations, delays, or

things like waiting for a key press, is best. The reason is that variable and function

registrations are only sent up once, about 30 seconds after connecting to the cloud.

Calling Particle.function after the registration information has been sent does not re-send

the request and the function will not work.

// EXAMPLE USAGE

int brewCoffee(String command);

void setup()
{
 // register the cloud function
 Particle.function("brew", brewCoffee);
}

void loop()
{
 // this loops forever
}

// this function automagically gets called upon a matching POST request
int brewCoffee(String command)
{
 // look for the matching argument "coffee" <-- max of 64 characters long
 if(command == "coffee")
 {
 // some example functions you might have
 //activateWaterHeater();
 //activateWaterPump();
 return 1;
 }
 else return -1;
}

https://docs.particle.io/reference/device-os/firmware#system-thread

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 6/221

You can expose a method on a C++ object to the Cloud.

The API request will be routed to the device and will run your brew function. The response

will have a return_value key containing the integer returned by brew.

// EXAMPLE USAGE WITH C++ OBJECT

class CoffeeMaker {
 public:
 CoffeeMaker() {
 }

 void setup() {
 // You should not call Particle.function from the constructor
 // of an object that will be declared as a global variable.
 Particle.function("brew", &CoffeeMaker::brew, this);
 }

 int brew(String command) {
 // do stuff
 return 1;
 }
};

CoffeeMaker myCoffeeMaker;

void setup() {
 myCoffeeMaker.setup();
}

COMPLEMENTARY API CALL
POST /v1/devices/{DEVICE_ID}/{FUNCTION}

EXAMPLE REQUEST
curl https://api.particle.io/v1/devices/0123456789abcdef/brew \
 -d access_token=123412341234 \
 -d "args=coffee"

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 7/221

Publish an event through the Particle Device Cloud that will be forwarded to all registered

listeners, such as callbacks, subscribed streams of Server-Sent Events, and other devices

listening via Particle.subscribe() .

This feature allows the device to generate an event based on a condition. For example, you

could connect a motion sensor to the device and have the device generate an event

whenever motion is detected.

Particle.publish pushes the value out of the device at a time controlled by the device

firmware. Particle.variable allows the value to be pulled from the device when requested

from the cloud side.

Cloud events have the following properties:

name (1–64 ASCII characters)

Note: Only use letters, numbers, underscores, dashes and slashes in event names. Spaces

and special characters may be escaped by different tools and libraries causing unexpected

results.

PUBLIC/PRIVATE (prior to 0.8.0 default PUBLIC - thereafter it's a required parameter

and PRIVATE is advisable)

ttl (time to live, 0–16777215 seconds, default 60) !! NOTE: TTL is not implemented,

hence the ttl value has no effect. Events must be caught immediately; once sent they

will be gone immediately.

optional data (up to 255 characters (prior to 0.8.0), 622 characters (since 0.8.0)). The

Spark Core remains limited to 255 characters.

Anyone may subscribe to public events; think of them like tweets. Only the owner of the

device will be able to subscribe to private events.

A device may not publish events beginning with a case-insensitive match for "spark". Such

events are reserved for officially curated data originating from the Cloud.

Calling Particle.publish() when the cloud connection has been turned off will not

publish an event. This is indicated by the return success code of false .

Particle.publish()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 8/221

If the cloud connection is turned on and trying to connect to the cloud unsuccessfully,

Particle.publish may block for 20 seconds to 5 minutes. Checking Particle.connected()

can prevent this.

For the time being there exists no way to access a previously published but TTL-unexpired

event.

String variables must be UTF-8 encoded. You cannot send arbitrary binary data or other

character sets like ISO-8859-1. If you need to send binary data you can use a text-based

encoding like Base64.

NOTE 1: Currently, a device can publish at rate of about 1 event/sec, with bursts of up to 4

allowed in 1 second. Back to back burst of 4 messages will take 4 seconds to recover.

NOTE 2: Particle.publish() and the Particle.subscribe() handler(s) share the same

buffer. As such, calling Particle.publish() within a Particle.subscribe() handler will

wipe the subscribe buffer! In these cases, copying the subscribe buffer's content to a

separate char buffer prior to calling Particle.publish() is recommended.

Publish a private event with the given name, no data, and the default TTL of 60 seconds.

Returns: A bool indicating success: (true or false)

Publish a private event with the given name and data, with the default TTL of 60 seconds.

// SYNTAX
Particle.publish(const char *eventName, PublishFlags flags);
Particle.publish(String eventName, PublishFlags flags);

// EXAMPLE USAGE
bool success;
success = Particle.publish("motion-detected", PRIVATE);
if (!success) {
 // get here if event publish did not work
}

https://github.com/rickkas7/Base64RK

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 9/221

Publish a private event with the given name, data, and TTL.

Publish a private event with the given name, data, and TTL.

Publish a public event with the given name.

// SYNTAX
Particle.publish(const char *eventName, const char *data, PublishFlags
flags);
Particle.publish(String eventName, String data, PublishFlags flags);

// EXAMPLE USAGE
Particle.publish("temperature", "19 F", PRIVATE);

// SYNTAX
Particle.publish(const char *eventName, const char *data, int ttl,
PublishFlags flags);
Particle.publish(String eventName, String data, int ttl, PublishFlags
flags);

// EXAMPLE USAGE
Particle.publish("lake-depth/1", "28m", 21600, PRIVATE);

// SYNTAX
Particle.publish(const char *eventName, const char *data, int ttl,
PublishFlags flags);
Particle.publish(String eventName, String data, int ttl, PublishFlags
flags);

// EXAMPLE USAGE
Particle.publish("front-door-unlocked", NULL, 60, PRIVATE);

// SYNTAX
Particle.publish(const char *eventName, PublishFlags flags);
Particle.publish(String eventName, PublishFlags flags);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 10/221

WITH_ACK flag

Since 0.6.1:

This flag causes Particle.publish() to return only after receiving an acknowledgement

that the published event has been received by the Cloud.

Since 0.7.0:

Particle.publish() flags can be combined using a regular syntax with OR operator (|).

// EXAMPLE USAGE
Particle.publish("front-door-unlocked", PRIVATE);

COMPLEMENTARY API CALL
GET /v1/events/{EVENT_NAME}

EXAMPLE REQUEST
curl -H "Authorization: Bearer {ACCESS_TOKEN_GOES_HERE}" \
 https://api.particle.io/v1/events/motion-detected

Will return a stream that echoes text when your event is published
event: motion-detected
data: {"data":"23:23:44","ttl":"60","published_at":"2014-05-
28T19:20:34.638Z","deviceid":"0123456789abcdef"}

// SYNTAX

Particle.publish("motion-detected", NULL, WITH_ACK);
Particle.publish("motion-detected", NULL, PRIVATE, WITH_ACK);
Particle.publish("motion-detected", NULL, ttl, PRIVATE, WITH_ACK);

// EXAMPLE - combining Particle.publish() flags

Particle.publish("motion-detected", PRIVATE | WITH_ACK);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 11/221

If you wish to send a public event, you should specify PUBLIC explictly. This will be

required in the future, but is optional in 0.7.0.

PUBLIC and PRIVATE are mutually exclusive.

Unlike functions and variables, you typically call Particle.publish from loop() (or a function

called from loop).

Since 1.2.0:

Publish vitals information

Provides a mechanism to control the interval at which system diagnostic messages are sent

to the cloud. Subsequently, this controls the granularity of detail on the fleet health metrics.

Argument(s):

period_s The period (in seconds) at which vitals messages are to be sent to the cloud

(default value: particle::NOW)

Particle.publishVitals()

Particle.publish("motion-detected", PUBLIC);

// SYNTAX

system_error_t Particle.publishVitals(system_tick_t period_s =
particle::NOW)

Particle.publishVitals(); // Publish vitals immmediately
Particle.publishVitals(particle::NOW); // Publish vitals immediately
Particle.publishVitals(5); // Publish vitals every 5 seconds, indefinitely
Particle.publishVitals(0); // Publish immediately and cancel periodic
publishing

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 12/221

particle::NOW - A special value used to send vitals immediately

0 - Publish a final message and disable periodic publishing

s - Publish an initial message and subsequent messages every s seconds

thereafter

Returns:

A system_error_t result code

system_error_t::SYSTEM_ERROR_NONE

system_error_t::SYSTEM_ERROR_IO

Examples:

// EXAMPLE - Publish vitals intermittently

bool condition;

setup () {
}

loop () {
 ... // Some logic that either will or will not set "condition"

 if (condition) {
 Particle.publishVitals(); // Publish vitals immmediately
 }
}

// EXAMPLE - Publish vitals periodically, indefinitely

setup () {
 Particle.publishVitals(3600); // Publish vitals each hour
}

loop () {
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 13/221

NOTE:NOTE: Diagnostic messages can be viewed in the Diagnostic messages can be viewed in the ConsoleConsole. Select the device in question,. Select the device in question,

and view the messages under the "EVENTS" tab.and view the messages under the "EVENTS" tab.

Subscribe to events published by devices.

This allows devices to talk to each other very easily. For example, one device could publish

events when a motion sensor is triggered and another could subscribe to these events and

Particle.subscribe()

// EXAMPLE - Publish vitals each minute and cancel vitals after one hour

size_t start = millis();

setup () {
 Particle.publishVitals(60); // Publish vitals each minute
}

loop () {
 // Cancel vitals after one hour
 if (3600000 < (millis() - start)) {
 Particle.publishVitals(0); // Publish immediately and cancel periodic
publishing
 }
}

https://console.particle.io/devices

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 14/221

respond by sounding an alarm.

To use Particle.subscribe() , define a handler function and register it in setup() .

You can listen to events published only by your own devices by adding a MY_DEVICES

constant.

Specifying MY_DEVICES only receives PRIVATE events.

Specifying ALL_DEVICES or omitting the third parameter only receives PUBLIC events.

flags subscribe ALL_DEVICES subscribe MY_DEVICES subscribe default

publish PUBLIC Y - Y

publish PRIVATE - Y -

publish default Y - Y

int i = 0;

void myHandler(const char *event, const char *data)
{
 i++;
 Serial.print(i);
 Serial.print(event);
 Serial.print(", data: ");
 if (data)
 Serial.println(data);
 else
 Serial.println("NULL");
}

void setup()
{
 Particle.subscribe("temperature", myHandler, ALL_DEVICES);
 Serial.begin(9600);
}

// only events from my devices
Particle.subscribe("the_event_prefix", theHandler, MY_DEVICES);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 15/221

You can register a method in a C++ object as a subscription handler.

#include "Particle.h"

SerialLogHandler logHandler;

class MyClass {
public:
 MyClass();
 virtual ~MyClass();

 void setup();

 void subscriptionHandler(const char *eventName, const char *data);
};

MyClass::MyClass() {
}

MyClass::~MyClass() {
}

void MyClass::setup() {
 Particle.subscribe("myEvent", &MyClass::subscriptionHandler, this,
MY_DEVICES);
}

void MyClass::subscriptionHandler(const char *eventName, const char *data) {
 Log.info("eventName=%s data=%s", eventName, data);
}

// In this example, MyClass is a globally constructed object.
MyClass myClass;

void setup() {
 myClass.setup();
}

void loop() {

}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 16/221

You should not call Particle.subscribe() from the constructor of a globally allocated C++

object. See Global Object Constructors for more information.

A subscription works like a prefix filter. If you subscribe to "foo", you will receive any event

whose name begins with "foo", including "foo", "fool", "foobar", and "food/indian/sweet-

curry-beans".

Received events will be passed to a handler function similar to Particle.function() . A

subscription handler (like myHandler above) must return void and take two arguments,

both of which are C strings (const char *).

The first argument is the full name of the published event.

The second argument (which may be NULL) is any data that came along with the

event.

Particle.subscribe() returns a bool indicating success. It is OK to register a subscription

when the device is not connected to the cloud - the subscription is automatically registered

with the cloud next time the device connects.

NOTE 1: A device can register up to 4 event handlers. This means you can call

Particle.subscribe() a maximum of 4 times; after that it will return false .

NOTE 2: Particle.publish() and the Particle.subscribe() handler(s) share the same

buffer. As such, calling Particle.publish() within a Particle.subscribe() handler will

wipe the subscribe buffer! In these cases, copying the subscribe buffer's content to a

separate char buffer prior to calling Particle.publish() is recommended.

Unlike functions and variables, you can call Particle.subscribe from setup() or from loop().

The subscription list can be added to at any time, and more than once.

Removes all subscription handlers previously registered with Particle.subscribe() .

Particle.unsubscribe()

// SYNTAX
Particle.unsubscribe();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 17/221

Particle.connect() connects the device to the Cloud. This will automatically activate the

network connection and attempt to connect to the Particle cloud if the device is not already

connected to the cloud.

After you call Particle.connect() , your loop will not be called again until the device

finishes connecting to the Cloud. Typically, you can expect a delay of approximately one

second.

In most cases, you do not need to call Particle.connect() ; it is called automatically when

the device turns on. Typically you only need to call Particle.connect() after disconnecting

with Particle.disconnect() or when you change the system mode.

Particle.disconnect() disconnects the device from the Cloud.

Particle.connect()

Particle.disconnect()

void setup() {}

void loop() {
 if (Particle.connected() == false) {
 Particle.connect();
 }
}

int counter = 10000;

void doConnectedWork() {
 digitalWrite(D7, HIGH);
 Serial.println("Working online");
}

void doOfflineWork() {
 digitalWrite(D7, LOW);
 Serial.println("Working offline");
}

bool needConnection() {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 18/221

*NOTE: When the device is disconnected, many features are not possible, including over-

the-air updates, reading Particle.variables, and calling Particle.functions.

If you disconnect from the Cloud, you will NOT BE ABLE to flash new firmware over the air.
Safe mode can be used to reconnect to the cloud.

Returns true when connected to the Cloud, and false when disconnected from the

Cloud.

Particle.connected()

 --counter;
 if (0 == counter)
 counter = 10000;
 return (2000 > counter);
}

void setup() {
 pinMode(D7, OUTPUT);
 Serial.begin(9600);
}

void loop() {
 if (needConnection()) {
 if (!Particle.connected())
 Particle.connect();
 doConnectedWork();
 } else {
 if (Particle.connected())
 Particle.disconnect();
 doOfflineWork();
 }
}

// SYNTAX
Particle.connected();

// EXAMPLE USAGE
void setup() {
 Serial.begin(9600);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 19/221

Runs the background loop. This is the public API for the former internal function

SPARK_WLAN_Loop() .

Particle.process() is a blocking call, and blocks for a few milliseconds.

Particle.process() is called automatically after every loop() and during delays. Typically

you will not need to call Particle.process() unless you block in some other way and need

to maintain the connection to the Cloud, or you change the system mode. If the user puts

the device into MANUAL mode, the user is responsible for calling Particle.process() . The

more frequently this function is called, the more responsive the device will be to incoming

messages, the more likely the Cloud connection will stay open, and the less likely that the

Wi-Fi module's buffer will overrun.

Particle.process()

}

void loop() {
 if (Particle.connected()) {
 Serial.println("Connected!");
 }
 delay(1000);
}

void setup() {
 Serial.begin(9600);
}

void loop() {
 // Do not do this in real code. You should return from loop() instead!
 while (1) {
 Particle.process();
 redundantLoop();
 }
}

void redundantLoop() {
 Serial.println("Well that was unnecessary.");
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 20/221

Synchronize the time with the Particle Device Cloud. This happens automatically when the

device connects to the Cloud. However, if your device runs continuously for a long time,

you may want to synchronize once per day or so.

Note that this function sends a request message to the Cloud and then returns. The time

on the device will not be synchronized until some milliseconds later when the Cloud

responds with the current time between calls to your loop. See Particle.syncTimeDone() ,

Particle.timeSyncedLast() , Time.isValid() and Particle.syncTimePending() for

information on how to wait for request to be finished.

Since 0.6.1:

Returns true if there is no syncTime() request currently pending or there is no active

connection to Particle Device Cloud. Returns false when there is a pending syncTime()

request.

Particle.syncTime()

Particle.syncTimeDone()

#define ONE_DAY_MILLIS (24 * 60 * 60 * 1000)
unsigned long lastSync = millis();

void loop() {
 if (millis() - lastSync > ONE_DAY_MILLIS) {
 // Request time synchronization from the Particle Device Cloud
 Particle.syncTime();
 lastSync = millis();
 }
}

// SYNTAX
Particle.syncTimeDone();

// EXAMPLE

void loop()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 21/221

See also Particle.timeSyncedLast() and Time.isValid() .

Since 0.6.1:

Returns true if there a syncTime() request currently pending. Returns false when there is

no syncTime() request pending or there is no active connection to Particle Device Cloud.

Particle.syncTimePending()

{
 // Request time synchronization from the Particle Device Cloud
 Particle.syncTime();
 // Wait until Raspberry Pi receives time from Particle Device Cloud (or
connection to Particle Device Cloud is lost)
 waitUntil(Particle.syncTimeDone);
 // Print current time
 Serial.println(Time.timeStr());
}

// SYNTAX
Particle.syncTimePending();

// EXAMPLE

void loop()
{
 // Request time synchronization from the Particle Device Cloud
 Particle.syncTime();
 // Wait until Raspberry Pi receives time from Particle Device Cloud (or
connection to Particle Device Cloud is lost)
 while(Particle.syncTimePending())
 {
 //
 // Do something else
 //

 Particle.process();
 }
 // Print current time

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 22/221

See also Particle.timeSyncedLast() and Time.isValid() .

Since 0.6.1:

Used to check when time was last synchronized with Particle Device Cloud.

Returns the number of milliseconds since the device began running the current program

when last time synchronization with Particle Device Cloud was performed.

This function takes one optional argument:

timestamp : time_t variable that will contain a UNIX timestamp received from Particle

Device Cloud during last time synchronization

Particle.timeSyncedLast()

 Serial.println(Time.timeStr());
}

// SYNTAX
Particle.timeSyncedLast();
Particle.timeSyncedLast(timestamp);

// EXAMPLE

#define ONE_DAY_MILLIS (24 * 60 * 60 * 1000)

void loop() {
 time_t lastSyncTimestamp;
 unsigned long lastSync = Particle.timeSyncedLast(lastSyncTimestamp);
 if (millis() - lastSync > ONE_DAY_MILLIS) {
 unsigned long cur = millis();
 Serial.printlnf("Time was last synchronized %lu milliseconds ago",
millis() - lastSync);
 if (lastSyncTimestamp > 0)
 {
 Serial.print("Time received from Particle Device Cloud was: ");
 Serial.println(Time.timeStr(lastSyncTimestamp));

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 23/221

Using this feature, the device can programmatically know its own public IP address.

This gives you the device name that is stored in the cloud,

Get Public IP

Get Device name

 }
 // Request time synchronization from Particle Device Cloud
 Particle.syncTime();
 // Wait until Raspberry Pi receives time from Particle Device Cloud (or
connection to Particle Device Cloud is lost)
 waitUntil(Particle.syncTimeDone);
 // Check if synchronized successfully
 if (Particle.timeSyncedLast() >= cur)
 {
 // Print current time
 Serial.println(Time.timeStr());
 }
 }
}

// Open a serial terminal and see the IP address printed out
void handler(const char *topic, const char *data) {
 Serial.println("received " + String(topic) + ": " + String(data));
}

void setup() {
 Serial.begin(115200);
 Particle.subscribe("particle/device/ip", handler, MY_DEVICES);
 Particle.publish("particle/device/ip", PRIVATE);
}

// Open a serial terminal and see the device name printed out
void handler(const char *topic, const char *data) {
 Serial.println("received " + String(topic) + ": " + String(data));
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 24/221

Grab 40 bytes of randomness from the cloud and {e}n{c}r{y}p{t} away!

Additional information on which pins can be used for which functions is available on the

pin information page.

pinMode() configures the specified pin to behave either as an input (with or without an

internal weak pull-up or pull-down resistor), or an output.

Get Random seed

Input/Output

pinMode()

void setup() {
 Serial.begin(115200);
 Particle.subscribe("particle/device/name", handler);
 Particle.publish("particle/device/name");
}

void handler(const char *topic, const char *data) {
 Serial.println("received " + String(topic) + ": " + String(data));
}

void setup() {
 Serial.begin(115200);
 Particle.subscribe("particle/device/random", handler);
 Particle.publish("particle/device/random");
}

// SYNTAX
pinMode(pin,mode);

https://docs.particle.io/reference/hardware/pin-info

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 25/221

pinMode() takes two arguments, pin : the number of the pin whose mode you wish to set

and mode : INPUT, INPUT_PULLUP, INPUT_PULLDOWN or OUTPUT.

pinMode() does not return anything.

When using INPUT_PULLDOWN make sure a high level signal does not exceed 3.3V.

Retrieves the current pin mode.

getPinMode(pin)

// EXAMPLE USAGE
int button = D0; // button is connected to D0
int LED = D1; // LED is connected to D1

void setup()
{
 pinMode(LED, OUTPUT); // sets pin as output
 pinMode(button, INPUT_PULLDOWN); // sets pin as input
}

void loop()
{
 // blink the LED as long as the button is pressed
 while(digitalRead(button) == HIGH) {
 digitalWrite(LED, HIGH); // sets the LED on
 delay(200); // waits for 200mS
 digitalWrite(LED, LOW); // sets the LED off
 delay(200); // waits for 200mS
 }
}

// EXAMPLE

if (getPinMode(D0)==INPUT) {
 // D0 is an input pin
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 26/221

Write a HIGH or a LOW value to a GPIO pin.

If the pin has been configured as an OUTPUT with pinMode() or if previously used with

analogWrite() , its voltage will be set to the corresponding value: 3.3V for HIGH, 0V

(ground) for LOW.

digitalWrite() takes two arguments, pin : the number of the pin whose value you wish to

set and value : HIGH or LOW .

digitalWrite() does not return anything.

Reads the value from a specified digital pin , either HIGH or LOW .

digitalWrite()

digitalRead()

// SYNTAX
digitalWrite(pin, value);

// EXAMPLE USAGE
int LED = D1; // LED connected to D1

void setup()
{
 pinMode(LED, OUTPUT); // sets pin as output
}

void loop()
{
 digitalWrite(LED, HIGH); // sets the LED on
 delay(200); // waits for 200mS
 digitalWrite(LED, LOW); // sets the LED off
 delay(200); // waits for 200mS
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 27/221

digitalRead() takes one argument, pin : the number of the digital pin you want to read.

digitalRead() returns HIGH or LOW .

Writes an analog value to a pin as a digital PWM (pulse-width modulated) signal. The

default frequency of the PWM signal is 500 Hz.

Can be used to light a LED at varying brightnesses or drive a motor at various speeds. After

a call to analogWrite(), the pin will generate a steady square wave of the specified duty

cycle until the next call to analogWrite() (or a call to digitalRead() or digitalWrite() on

the same pin).

analogWrite() (PWM)

// SYNTAX
digitalRead(pin);

// EXAMPLE USAGE
int button = D0; // button is connected to D0
int LED = D1; // LED is connected to D1
int val = 0; // variable to store the read value

void setup()
{
 pinMode(LED, OUTPUT); // sets pin as output
 pinMode(button, INPUT_PULLDOWN); // sets pin as input
}

void loop()
{
 val = digitalRead(button); // read the input pin
 digitalWrite(LED, val); // sets the LED to the button's value
}

// SYNTAX
analogWrite(pin, value);
analogWrite(pin, value, frequency);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 28/221

analogWrite() takes two or three arguments:

pin : the number of the pin whose value you wish to set

value : the duty cycle: between 0 (always off) and 255 (always on). Since 0.6.0:

between 0 and 255 (default 8-bit resolution) or 2^(analogWriteResolution(pin)) - 1

in general.

NOTE: pinMode(pin, OUTPUT); is required before calling analogWrite(pin, value); or else

the pin will not be initialized as a PWM output and set to the desired duty cycle.

analogWrite() does not return anything.

NOTE: When used with PWM capable pins, the analogWrite() function sets up these pins

as PWM only.

Additional information on which pins can be used for PWM output is available on the pin

information page.

// EXAMPLE USAGE

int ledPin = D1; // LED connected to digital pin D1
int analogPin = A0; // potentiometer connected to analog pin A0
int val = 0; // variable to store the read value

void setup()
{
 pinMode(ledPin, OUTPUT); // sets the pin as output
}

void loop()
{
 val = analogRead(analogPin); // read the input pin
 analogWrite(ledPin, val/16); // analogRead values go from 0 to 4095,
 // analogWrite values from 0 to 255.
 delay(10);
}

https://docs.particle.io/reference/hardware/pin-info

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 29/221

Since 0.6.0:

Sets or retrieves the resolution of analogWrite() function of a particular pin.

analogWriteResolution() takes one or two arguments:

pin : the number of the pin whose resolution you wish to set or retrieve

resolution : (optional) resolution in bits. The value can range from 2 to 31 bits. If the

resolution is not supported, it will not be applied. The default is 8.

analogWriteResolution() returns currently set resolution.

NOTE: The resolution also affects maximum frequency that can be used with

analogWrite() . The maximum frequency allowed with current resolution can be checked

by calling analogWriteMaxFrequency() .

Since 0.6.0:

Returns maximum frequency that can be used with analogWrite() on this pin.

analogWriteMaxFrequency() takes one argument:

pin : the number of the pin

analogWriteResolution() (PWM)

analogWriteMaxFrequency() (PWM)

// EXAMPLE USAGE
pinMode(D1, OUTPUT); // sets the pin as output
analogWriteResolution(D1, 12); // sets analogWrite resolution to 12 bits
analogWrite(D1, 3000, 1000); // 3000/4095 = ~73% duty cycle at 1kHz

// EXAMPLE USAGE
pinMode(D1, OUTPUT); // sets the pin as output
analogWriteResolution(D1, 12); // sets analogWrite resolution to 12 bits
int maxFreq = analogWriteMaxFrequency(D1);
analogWrite(D1, 3000, maxFreq / 2); // 3000/4095 = ~73% duty cycle

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 30/221

The Input/Ouput functions include safety checks such as making sure a pin is set to

OUTPUT when doing a digitalWrite() or that the pin is not being used for a timer function.

These safety measures represent good coding and system design practice.

There are times when the fastest possible input/output operations are crucial to an

applications performance. The SPI, UART (Serial) or I2C hardware are examples of low level

performance-oriented devices. There are, however, times when these devices may not be

suitable or available. For example, One-wire support is done in software, not hardware.

In order to provide the fastest possible bit-oriented I/O, the normal safety checks must be

skipped. As such, please be aware that the programmer is responsible for proper planning

and use of the low level I/O functions.

Prior to using the following low-level functions, pinMode() must be used to configure the

target pin.

Write a HIGH value to a digital pin.

pinSetFast() takes one argument, pin : the number of the pin whose value you wish to set

HIGH .

pinSetFast() does not return anything.

Low Level Input/Output

pinSetFast()

// SYNTAX
pinSetFast(pin);

// EXAMPLE USAGE
int LED = D7; // LED connected to D7

void setup()
{

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 31/221

Write a LOW value to a digital pin.

pinResetFast() takes one argument, pin : the number of the pin whose value you wish to

set LOW .

pinResetFast() does not return anything.

pinResetFast()

 pinMode(LED, OUTPUT); // sets pin as output
}

void loop()
{
 pinSetFast(LED); // set the LED on
 delay(500);
 pinResetFast(LED); // set the LED off
 delay(500);
}

// SYNTAX
pinResetFast(pin);

// EXAMPLE USAGE
int LED = D7; // LED connected to D7

void setup()
{
 pinMode(LED, OUTPUT); // sets pin as output
}

void loop()
{
 pinSetFast(LED); // set the LED on
 delay(500);
 pinResetFast(LED); // set the LED off
 delay(500);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 32/221

Write a HIGH or LOW value to a digital pin. This function will call pinSetFast() or

pinResetFast() based on value and is useful when value is calculated. As such, this

imposes a slight time overhead.

digitalWriteFast() pin : the number of the pin whose value you wish to set and value :

HIGH or LOW .

digitalWriteFast() does not return anything.

Reads the value from a specified digital pin , either HIGH or LOW .

digitalWriteFast()

pinReadFast()

// SYNTAX
digitalWriteFast(pin, value);

// EXAMPLE USAGE
int LED = D7; // LED connected to D7

void setup()
{
 pinMode(LED, OUTPUT); // sets pin as output
}

void loop()
{
 digitalWriteFast(LED, HIGH); // set the LED on
 delay(500);
 digitalWriteFast(LED, LOW); // set the LED off
 delay(500);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 33/221

pinReadFast() takes one argument, pin : the number of the digital pin you want to read.

pinReadFast() returns HIGH or LOW .

Generates a square wave of the specified frequency and duration (and 50% duty cycle) on

a timer channel pin which supports PWM. Use of the tone() function will interfere with PWM

output on the selected pin. tone() is generally used to make sounds or music on speakers

or piezo buzzers.

Advanced I/O

tone()

// SYNTAX
pinReadFast(pin);

// EXAMPLE USAGE
int button = D0; // button is connected to D0
int LED = D1; // LED is connected to D1
int val = 0; // variable to store the read value

void setup()
{
 pinMode(LED, OUTPUT); // sets pin as output
 pinMode(button, INPUT_PULLDOWN); // sets pin as input
}

void loop()
{
 val = pinReadFast(button); // read the input pin
 digitalWriteFast(LED, val); // sets the LED to the button's value
}

// SYNTAX
tone(pin, frequency, duration)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 34/221

tone() takes three arguments, pin : the pin on which to generate the tone, frequency : the

frequency of the tone in hertz and duration : the duration of the tone in milliseconds (a

zero value = continuous tone).

The frequency range is from 20Hz to 20kHz. Frequencies outside this range will not be

played.

tone() does not return anything.

Additional information on which pins can be used for tone() is available on the pin

information page.

#include "application.h"
// The Photon has 9 PWM pins: D0, D1, D2, D3, A4, A5, A7, RX and TX.
//
// EXAMPLE USAGE
// Plays a melody - Connect small speaker to speakerPin
int speakerPin = D0;

// Notes defined in microseconds (Period/2)
// from note C to B, Octaves 3 through 7
int notes[] =
{0,
/* C, C#, D, D#, E, F, F#, G, G#, A, A#, B */
3817,3597,3401,3205,3030,2857,2703,2551,2404,2273,2146,2024, // 3 (1-12)
1908,1805,1701,1608,1515,1433,1351,1276,1205,1136,1073,1012, // 4 (13-24)
 956, 903, 852, 804, 759, 716, 676, 638, 602, 568, 536, 506, // 5 (25-37)
 478, 451, 426, 402, 379, 358, 338, 319, 301, 284, 268, 253, // 6 (38-50)
 239, 226, 213, 201, 190, 179, 169, 159, 151, 142, 134, 127 }; // 7 (51-62)

#define NOTE_G3 2551
#define NOTE_G4 1276
#define NOTE_C5 956
#define NOTE_E5 759
#define NOTE_G5 638
#define RELEASE 20
#define BPM 100

// notes in the melody:
int melody[] =

https://docs.particle.io/reference/hardware/pin-info

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 35/221

Stops the generation of a square wave triggered by tone() on a specified pin. Has no effect

if no tone is being generated.

The available pins are the same as for tone().

noTone() takes one argument, pin : the pin on which to stop generating the tone.

noTone() does not return anything.

noTone()

{NOTE_E5,NOTE_E5,0,NOTE_E5,0,NOTE_C5,NOTE_E5,0,NOTE_G5,0,0,NOTE_G4};

// note durations: 4 = quarter note, 2 = half note, etc.:
int noteDurations[] = {4,4,4,4,4,4,4,4,4,2,4,4};

void setup() {
 // iterate over the notes of the melody:
 for (int thisNote = 0; thisNote < 12; thisNote++) {

 // to calculate the note duration, take one second
 // divided by the note type.
 // e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 60*1000/BPM/noteDurations[thisNote];
 tone(speakerPin, (melody[thisNote]!=0)?
(500000/melody[thisNote]):0,noteDuration-RELEASE);

 // blocking delay needed because tone() does not block
 delay(noteDuration);
 }
}

// SYNTAX
noTone(pin)

//See the tone() example

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 36/221

Shifts out a byte of data one bit at a time on a specified pin. Starts from either the most (i.e.

the leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data pin, after

which a clock pin is pulsed (taken high, then low) to indicate that the bit is available.

NOTE: if you're interfacing with a device that's clocked by rising edges, you'll need to

make sure that the clock pin is low before the call to shiftOut() , e.g. with a call to

digitalWrite(clockPin, LOW) .

This is a software implementation; see also the SPI function, which provides a hardware

implementation that is faster but works only on specific pins.

shiftOut()

// SYNTAX
shiftOut(dataPin, clockPin, bitOrder, value)

// EXAMPLE USAGE

// Use digital pins D0 for data and D1 for clock
int dataPin = D0;
int clock = D1;

uint8_t data = 50;

setup() {
 // Set data and clock pins as OUTPUT pins before using shiftOut()
 pinMode(dataPin, OUTPUT);
 pinMode(clock, OUTPUT);

 // shift out data using MSB first
 shiftOut(dataPin, clock, MSBFIRST, data);

 // Or do this for LSBFIRST serial
 shiftOut(dataPin, clock, LSBFIRST, data);
}

loop() {
 // nothing to do
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 37/221

shiftOut() takes four arguments, 'dataPin': the pin on which to output each bit, clockPin :

the pin to toggle once the dataPin has been set to the correct value, bitOrder : which order

to shift out the bits; either MSBFIRST or LSBFIRST (Most Significant Bit First, or, Least

Significant Bit First) and value : the data (byte) to shift out.

shiftOut() does not return anything.

Shifts in a byte of data one bit at a time. Starts from either the most (i.e. the leftmost) or

least (rightmost) significant bit. For each bit, the clock pin is pulled high, the next bit is read

from the data line, and then the clock pin is taken low.

NOTE: if you're interfacing with a device that's clocked by rising edges, you'll need to

make sure that the clock pin is low before the call to shiftOut(), e.g. with a call to

digitalWrite(clockPin, LOW) .

This is a software implementation; see also the SPI function, which provides a hardware

implementation that is faster but works only on specific pins.

shiftIn()

// SYNTAX
shiftIn(dataPin, clockPin, bitOrder)

// EXAMPLE USAGE

// Use digital pins D0 for data and D1 for clock
int dataPin = D0;
int clock = D1;

uint8_t data;

setup() {
 // Set data as INPUT and clock pin as OUTPUT before using shiftIn()
 pinMode(dataPin, INPUT);
 pinMode(clock, OUTPUT);

 // shift in data using MSB first

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 38/221

shiftIn() takes three arguments, 'dataPin': the pin on which to input each bit, clockPin :

the pin to toggle to signal a read from dataPin, bitOrder : which order to shift in the bits;

either MSBFIRST or LSBFIRST (Most Significant Bit First, or, Least Significant Bit First).

shiftIn() returns the byte value read.

Since 0.4.7:

Reads a pulse (either HIGH or LOW) on a pin. For example, if value is HIGH, pulseIn() waits

for the pin to go HIGH, starts timing, then waits for the pin to go LOW and stops timing.

Returns the length of the pulse in microseconds or 0 if no complete pulse was received

within the timeout.

The timing of this function is based on an internal hardware counter derived from the

system tick clock. Resolution is 1/Fosc (1/72MHz for Core, 1/120MHz for

Photon/P1/Electron). Works on pulses from 10 microseconds to 3 seconds in length.

Please note that if the pin is already reading the desired value when the function is called,

it will wait for the pin to be the opposite state of the desired value , and then finally

measure the duration of the desired value . This routine is blocking and does not use

interrupts. The pulseIn() routine will time out and return 0 after 3 seconds.

pulseIn()

 data = shiftIn(dataPin, clock, MSBFIRST);

 // Or do this for LSBFIRST serial
 data = shiftIn(dataPin, clock, LSBFIRST);
}

loop() {
 // nothing to do
}

// SYNTAX
pulseIn(pin, value)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 39/221

pulseIn() takes two arguments, pin : the pin on which you want to read the pulse (this can

be any GPIO, e.g. D1, A2, C0, B3, etc..), value : type of pulse to read: either HIGH or LOW.

pin should be set to one of three pinMode()'s prior to using pulseIn(), INPUT ,

INPUT_PULLUP or INPUT_PULLDOWN .

pulseIn() returns the length of the pulse (in microseconds) or 0 if no pulse is completed

before the 3 second timeout (unsigned long)

Serial

// EXAMPLE
unsigned long duration;

void setup()
{
 Serial.begin(9600);
 pinMode(D0, INPUT);

 // Pulse generator, connect D1 to D0 with a jumper
 // PWM output is 500Hz at 50% duty cycle
 // 1000us HIGH, 1000us LOW
 pinMode(D1, OUTPUT);
 analogWrite(D1, 128);
}

void loop()
{
 duration = pulseIn(D0, HIGH);
 Serial.printlnf("%d us", duration);
 delay(1000);
}

/* OUTPUT
 * 1003 us
 * 1003 us
 * 1003 us
 * 1003 us
 */

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 40/221

(inherits from Stream)

Serial: This channel communicates between the terminal and the firmware running. It

uses standard input and standard output.

Serial1: This channel is available via the device's TX and RX pins.

IMPORTANT: Support for Serial1 is not complete for the Raspberry Pi so Serial1 never

returns any data.

To use the Serial1 pins to communicate with your personal computer, you will need an

additional USB-to-serial adapter. To use them to communicate with an external TTL serial

device, connect the TX pin to your device's RX pin, the RX to your device's TX pin, and the

ground of your Core to your device's ground.

To use the hardware serial pins of (Serial1) to communicate with your personal computer,

you will need an additional USB-to-serial adapter. To use them to communicate with an

external TTL serial device, connect the TX pin to your device's RX pin, the RX to your

device's TX pin, and the ground of your Raspberry Pi to your device's ground.

// EXAMPLE USAGE
void setup()
{
 Serial.begin();
 Serial.println("Hello World!");
}

// EXAMPLE USAGE

void setup()
{
 Serial1.begin(9600);

 Serial1.println("Hello World!");
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 41/221

NOTE: Please take into account that the voltage levels on these pins operate at 0V to 3.3V

and should not be connected directly to a computer's RS232 serial port which operates at

+/- 12V and will damage the Raspberry Pi.

Available on Serial, Serial1.

Enables serial channel with specified configuration.

Parameters:

speed : parameter that specifies the baud rate (long) (optional for Serial)

config : parameter that specifies the number of data bits used, parity and stop bits

(long) (not used with Serial)

begin()

// SYNTAX
Serial.begin(); // via USB port

Serial1.begin(speed); // via TX/RX pins
Serial1.begin(speed, config); // "

Serial1.begin(9600, SERIAL_9N1); // via TX/RX pins, 9600 9N1 mode
Serial1.begin(9600, SERIAL_DATA_BITS_8 | SERIAL_STOP_BITS_1_5 |
SERIAL_PARITY_EVEN); // via TX/RX pins, 9600 8E1.5

// EXAMPLE USAGE
void setup()
{
 Serial.begin(9600); // open serial over USB

 // Wait for a USB serial connection for up to 30 seconds
 waitFor(Serial.isConnected, 30000);

 Serial1.begin(9600); // open serial over TX and RX pins

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 42/221

Since 0.5.0: 28800 baudrate set by the Host on Serial will put the device in Listening

Mode, where a YMODEM download can be started by additionally sending an f character.

Baudrate 14400 can be used to put the device into DFU Mode.

When using hardware serial channels (Serial1, Serial2), the configuration of the serial

channel may also specify the number of data bits, stop bits, parity, flow control and other

settings. The default is SERIAL_8N1 (8 data bits, no parity and 1 stop bit) and does not

need to be specified to achieve this configuration. To specify one of the following

configurations, add one of these defines as the second parameter in the begin() function,

e.g. Serial1.begin(9600, SERIAL_8E1); for 8 data bits, even parity and 1 stop bit.

Pre-defined Serial configurations available:

SERIAL_FLOW_CONTROL_NONE - no flow control

SERIAL_FLOW_CONTROL_RTS - RTS flow control

SERIAL_FLOW_CONTROL_CTS - CTS flow control

SERIAL_FLOW_CONTROL_RTS_CTS - RTS/CTS flow control

Available on Serial, Serial1.

Disables serial channel.

When used with hardware serial channels (Serial1, Serial2), disables serial communication,

allowing channel's RX and TX pins to be used for general input and output. To re-enable

serial communication, call SerialX.begin() .

end()

 Serial.println("Hello Computer");
 Serial1.println("Hello Serial 1");
}

void loop() {}

// SYNTAX
Serial1.end();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 43/221

Available on Serial, Serial1.

Get the number of bytes (characters) available for reading from the serial port. This is data

that's already arrived and stored in the serial receive buffer.

The receive buffer size for hardware serial channels (Serial1, Serial2) is bytes and cannot be

changed.

The receive buffer size for Serial is 64 bytes.

Since 0.4.9: Available on Serial1.

available()

availableForWrite()

// EXAMPLE USAGE
void setup()
{
 Serial.begin(9600);
 Serial1.begin(9600);

}

void loop()
{
 // read from port 0, send to port 1:
 if (Serial.available())
 {
 int inByte = Serial.read();
 Serial1.write(inByte);
 }
 // read from port 1, send to port 0:
 if (Serial1.available())
 {
 int inByte = Serial1.read();
 Serial.write(inByte);
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 44/221

Since 0.5.0: Available on USB Serial (Serial)

Retrieves the number of bytes (characters) that can be written to this serial port without

blocking.

If blockOnOverrun(false) has been called, the method returns the number of bytes that

can be written to the buffer without causing buffer overrun, which would cause old data to

be discarded and overwritten.

Since 0.4.9: Available on Serial1.

Since 0.5.0: Available on USB Serial (Serial)

Defines what should happen when calls to write()/print()/println()/printlnf() that

would overrun the buffer.

blockOnOverrun(true) - this is the default setting. When there is no room in the buffer

for the data to be written, the program waits/blocks until there is room. This avoids

buffer overrun, where data that has not yet been sent over serial is overwritten by new

data. Use this option for increased data integrity at the cost of slowing down realtime

code execution when lots of serial data is sent at once.

blockOnOverrun(false) - when there is no room in the buffer for data to be written, the

data is written anyway, causing the new data to replace the old data. This option is

provided when performance is more important than data integrity.

A family of application-defined functions that are called whenever there is data to be read

from a serial peripheral.

serialEvent: called when there is data available from Serial

serialEvent1: called when there is data available from Serial1

blockOnOverrun()

serialEvent()

// EXAMPLE - fast and furious over Serial1
Serial1.blockOnOverrun(false);
Serial1.begin(115200);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 45/221

The serialEvent functions are called in between calls to the application loop() . This

means that if loop() runs for a long time due to delay() calls or other blocking calls the

serial buffer might become full between subsequent calls to serialEvent and serial

characters might be lost. Avoid long delay() calls in your application if using serialEvent .

Since serialEvent functions are an extension of the application loop, it is ok to call any

functions that you would also call from loop() . Because of this, there is little advantage to

using serial events over just reading serial from loop().

Available on Serial, Serial1.

Returns the next byte (character) of incoming serial data without removing it from the

internal serial buffer. That is, successive calls to peek() will return the same character, as will

the next call to read() .

peek() returns the first byte of incoming serial data available (or -1 if no data is available) -

int

peek()

// EXAMPLE - echo all characters typed over serial

void setup()
{
 Serial.begin(9600);
}

void serialEvent()
{
 char c = Serial.read();
 Serial.print(c);
}

// SYNTAX
Serial.peek();
Serial1.peek();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 46/221

Available on Serial, Serial1.

Writes binary data to the serial port. This data is sent as a byte or series of bytes; to send

the characters representing the digits of a number use the print() function instead.

Parameters:

val : a value to send as a single byte

str : a string to send as a series of bytes

buf : an array to send as a series of bytes

len : the length of the buffer

write() will return the number of bytes written, though reading that number is optional.

write()

// SYNTAX
Serial.write(val);
Serial.write(str);
Serial.write(buf, len);

// EXAMPLE USAGE

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.write(45); // send a byte with the value 45

 int bytesSent = Serial.write(“hello”); //send the string “hello” and
return the length of the string.
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 47/221

Available on Serial, Serial1.

Reads incoming serial data.

read() returns the first byte of incoming serial data available (or -1 if no data is available) -

int

Available on Serial, Serial1.

read()

print()

// SYNTAX
Serial.read();
Serial1.read();

// EXAMPLE USAGE
int incomingByte = 0; // for incoming serial data

void setup() {
 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps
}

void loop() {
 // send data only when you receive data:
 if (Serial.available() > 0) {
 // read the incoming byte:
 incomingByte = Serial.read();

 // say what you got:
 Serial.print("I received: ");
 Serial.println(incomingByte, DEC);
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 48/221

Prints data to the serial port as human-readable ASCII text. This command can take many

forms. Numbers are printed using an ASCII character for each digit. Floats are similarly

printed as ASCII digits, defaulting to two decimal places. Bytes are sent as a single

character. Characters and strings are sent as is. For example:

Serial.print(78) gives "78"

Serial.print(1.23456) gives "1.23"

Serial.print('N') gives "N"

Serial.print("Hello world.") gives "Hello world."

An optional second parameter specifies the base (format) to use; permitted values are BIN

(binary, or base 2), OCT (octal, or base 8), DEC (decimal, or base 10), HEX (hexadecimal, or

base 16). For floating point numbers, this parameter specifies the number of decimal

places to use. For example:

Serial.print(78, BIN) gives "1001110"

Serial.print(78, OCT) gives "116"

Serial.print(78, DEC) gives "78"

Serial.print(78, HEX) gives "4E"

Serial.println(1.23456, 0) gives "1"

Serial.println(1.23456, 2) gives "1.23"

Serial.println(1.23456, 4) gives "1.2346"

Available on Serial, Serial1.

Prints data to the serial port as human-readable ASCII text followed by a carriage return

character (ASCII 13, or '\r') and a newline character (ASCII 10, or '\n'). This command takes

the same forms as Serial.print() .

Parameters:

println()

// SYNTAX
Serial.println(val);
Serial.println(val, format);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 49/221

val : the value to print - any data type

format : specifies the number base (for integral data types) or number of decimal

places (for floating point types)

println() returns the number of bytes written, though reading that number is optional -

size_t (long)

printf()

// EXAMPLE
//reads an analog input on analog in A0, prints the value out.

int analogValue = 0; // variable to hold the analog value

void setup()
{
 // Make sure your Serial Terminal app is closed before powering your
device
 Serial.begin(9600);
 // Wait for a USB serial connection for up to 30 seconds
 waitFor(Serial.isConnected, 30000);
}

void loop() {
 // read the analog input on pin A0:
 analogValue = analogRead(A0);

 // print it out in many formats:
 Serial.println(analogValue); // print as an ASCII-encoded decimal
 Serial.println(analogValue, DEC); // print as an ASCII-encoded decimal
 Serial.println(analogValue, HEX); // print as an ASCII-encoded
hexadecimal
 Serial.println(analogValue, OCT); // print as an ASCII-encoded octal
 Serial.println(analogValue, BIN); // print as an ASCII-encoded binary

 // delay 10 milliseconds before the next reading:
 delay(10);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 50/221

Since 0.4.6:

Available on Serial, Serial1.

Provides printf-style formatting over serial.

printf allows strings to be built by combining a number of values with text.

Running this code prints:

The last printf() call could be changed to printlnf() to avoid a separate call to

println() .

Since 0.4.6:

Available on Serial, Serial1.

formatted output followed by a newline. Produces the same output as printf which is then

followed by a newline character, so to that subsequent output appears on the next line.

Waits for the transmission of outgoing serial data to complete.

printlnf()

flush()

Serial.printf("Reading temperature sensor at %s...",
Time.timeStr().c_str());
float temp = readTemp();
Serial.printf("the temperature today is %f Kelvin", temp);
Serial.println();

Reading temperature sensor at Thu 01 Oct 2015 12:34...the temperature today
is 293.1 Kelvin.

http://www.cplusplus.com/reference/cstdio/printf/

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 51/221

flush() neither takes a parameter nor returns anything.

Another technique is to use waitFor which makes it easy to time-limit the waiting period.

Since 0.5.3 Available on Serial .

Since 0.6.0 Available on Serial .

isConnected()

// SYNTAX
Serial.flush();
Serial1.flush();

// EXAMPLE USAGE
void setup()
{
 Serial.begin(); // open serial over USB
 while(!Serial.isConnected()) // wait for Host to open serial port
 Particle.process();

 Serial.println("Hello there!");
}

// EXAMPLE USAGE
void setup()
{
 Serial.begin(); // open serial over USB

 // Wait for a USB serial connection for up to 30 seconds
 waitFor(Serial.isConnected, 30000);

 Serial.println("Hello there!");
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 52/221

Used to check if host has serial port (virtual COM port) open.

Returns:

true when Host has virtual COM port open.

This library allows you to communicate with SPI devices, with the Raspberry Pi as the

master device.

There are dedicated pins for SPI on the Raspberry Pi: MOSI , MISO , SCK and 2 chip select

pins CE0 and CE1 .

Note: Before using the SPI interface on the Raspberry Pi, you have to enable it in hardware.

In a terminal, type sudo raspi-config , go to Advanced Options , select SPI and answer Yes

to enable it. Reboot the Raspberry Pi before flashing firmware that uses the SPI peripheral.

It is not recommended to use the SPI pins for general purpose IO. If you need to, you must

disable the SPI peripheral in raspi-config , reboot and use the MOSI , MISO , SCK , CE0 and

CE1 pins with pinMode , digitalRead or digitalWrite .

Initializes the SPI bus by setting SCK, MOSI, and a user-specified slave-select pin to

outputs, MISO to input. SCK is pulled either high or low depending on the configured SPI

data mode (default high for SPI_MODE3). Slave-select is pulled high.

Note: The SPI firmware ONLY initializes the user-specified slave-select pin as an OUTPUT .

The user's code must control the slave-select pin with digitalWrite() before and after

each SPI transfer for the desired SPI slave device. Calling SPI.end() does NOT reset the

pin mode of the SPI pins.

SPI

begin()

// SYNTAX
SPI.begin(ss);
SPI1.begin(ss);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 53/221

Where, the parameter ss is the SPI device slave-select pin to initialize. If no pin is

specified, the default pin is:

Argon, Boron, Xenon: A5 (D14)

B Series SoM: D8

Photon, P1, Electron, and E Series: A2

For SPI1 , the default ss pin is D5 .

(inherits from Stream)

This library allows you to communicate with I2C / TWI (Two Wire Interface) devices.

There are dedicated pins for I2C on the Raspberry Pi: Serial Data Line (SDA) and Serial

Clock (SCL). See the pin out diagram to find out where pins are located.

Note: Before using the I2C interface on the Raspberry Pi, you have to enable it in hardware.

In a terminal, type sudo raspi-config , go to Advanced Options , select I2C and answer Yes

to enable it. Reboot the Raspberry Pi before flashing firmware that uses the I2C peripheral.

It is not recommended to use the I2C pins for general purpose IO. If you need to, you must

disable the I2C peripheral in raspi-config , reboot and use the SCL and SDA pins with

pinMode , digitalRead or digitalWrite .

Initiate the Wire library and join the I2C bus as a master. This should normally be called

only once.

Wire (I2C)

begin()

// Example using SPI1, with D5 as the SS pin:
SPI1.begin();
// or
SPI1.begin(D5);

https://docs.particle.io/datasheets/raspberrypi-datasheet#pin-out-diagram

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 54/221

Since 0.4.6:

Releases the I2C bus so that the pins used by the I2C bus are available for general purpose

I/O.

Used to check if the Wire library is enabled already. Useful if using multiple slave devices

on the same I2C bus. Check if enabled before calling Wire.begin() again.

Returns: boolean true if I2C enabled, false if I2C disabled.

Used by the master to request bytes from a slave device. The bytes may then be retrieved

with the available() and read() functions.

end()

isEnabled()

requestFrom()

// SYNTAX
Wire.begin();

// SYNTAX
Wire.isEnabled();

// EXAMPLE USAGE

// Initialize the I2C bus if not already enabled
if (!Wire.isEnabled()) {
 Wire.begin();
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 55/221

Parameters:

address : the 7-bit address of the device to request bytes from

quantity : the number of bytes to request (Max. 32)

stop : boolean. true will send a stop message after the request, releasing the bus.

false will continually send a restart after the request, keeping the connection active.

The bus will not be released, which prevents another master device from transmitting

between messages. This allows one master device to send multiple transmissions

while in control. If no argument is specified, the default value is true .

Returns: byte : the number of bytes returned from the slave device. If a timeout occurs, will

return 0 .

Begin a transmission to the I2C slave device with the given address. Subsequently, queue

bytes for transmission with the write() function and transmit them by calling

endTransmission() .

Parameters: address : the 7-bit address of the device to transmit to.

Ends a transmission to a slave device that was begun by beginTransmission() and

transmits the bytes that were queued by write() .

beginTransmission()

endTransmission()

// SYNTAX
Wire.requestFrom(address, quantity);
Wire.requestFrom(address, quantity, stop);

// SYNTAX
Wire.beginTransmission(address);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 56/221

Parameters: stop : boolean. true will send a stop message after the last byte, releasing

the bus after transmission. false will send a restart, keeping the connection active. The

bus will not be released, which prevents another master device from transmitting between

messages. This allows one master device to send multiple transmissions while in control. If

no argument is specified, the default value is true .

Returns: byte , which indicates the status of the transmission:

0: success

1: busy timeout upon entering endTransmission()

2: START bit generation timeout

3: end of address transmission timeout

4: data byte transfer timeout

5: data byte transfer succeeded, busy timeout immediately after

Queues bytes for transmission from a master to slave device (in-between calls to

beginTransmission() and endTransmission()). Buffer size is truncated to 32 bytes; writing

bytes beyond 32 before calling endTransmission() will be ignored.

Parameters:

value : a value to send as a single byte

string : a string to send as a series of bytes

write()

// SYNTAX
Wire.endTransmission();
Wire.endTransmission(stop);

// SYNTAX
Wire.write(value);
Wire.write(string);
Wire.write(data, length);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 57/221

data : an array of data to send as bytes

length : the number of bytes to transmit (Max. 32)

Returns: byte

write() will return the number of bytes written, though reading that number is optional.

Returns the number of bytes available for retrieval with read() . This should be called on a

master device after a call to requestFrom() .

Returns: The number of bytes available for reading.

available()

// EXAMPLE USAGE

// Master Writer running on Device No.1 (Use with corresponding Slave Reader
running on Device No.2)

void setup() {
 Wire.begin(); // join i2c bus as master
}

byte x = 0;

void loop() {
 Wire.beginTransmission(4); // transmit to slave device #4
 Wire.write("x is "); // sends five bytes
 Wire.write(x); // sends one byte
 Wire.endTransmission(); // stop transmitting

 x++;
 delay(500);
}

Wire.available();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 58/221

Reads a byte that was transmitted from a slave device to a master after a call to

requestFrom() . read() inherits from the Stream utility class.

Returns: The next byte received

Similar in use to read(). Reads (but does not remove from the buffer) a byte that was

transmitted from a slave device to a master after a call to requestFrom() . read() inherits

from the Stream utility class. Useful for peeking at the next byte to be read.

read()

peek()

// SYNTAX
Wire.read() ;

// EXAMPLE USAGE

// Master Reader running on Device No.1 (Use with corresponding Slave Writer
running on Device No.2)

void setup() {
 Wire.begin(); // join i2c bus as master
 Serial.begin(9600); // start serial for output
}

void loop() {
 Wire.requestFrom(2, 6); // request 6 bytes from slave device #2

 while(Wire.available()){ // slave may send less than requested
 char c = Wire.read(); // receive a byte as character
 Serial.print(c); // print the character
 }

 delay(500);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 59/221

Returns: The next byte received (without removing it from the buffer)

Creates an IP address that can be used with TCPServer, TCPClient, and UDP objects.

The IPAddress also allows for comparisons.

You can also use indexing the get or change individual bytes in the IP address.

IPAddress

// SYNTAX
Wire.peek();

// EXAMPLE USAGE

IPAddress localIP;
IPAddress server(8,8,8,8);
IPAddress IPfromInt(167772162UL); // 10.0.0.2 as 10*256^3+0*256^2+0*256+2
uint8_t server[] = { 10, 0, 0, 2};
IPAddress IPfromBytes(server);

if (IPfromInt == IPfromBytes)
{
 Serial.println("Same IP addresses");
}

// PING ALL HOSTS ON YOUR SUBNET EXCEPT YOURSELF
IPAddress localIP = WiFi.localIP();
uint8_t myLastAddrByte = localIP[3];
for(uint8_t ipRange=1; ipRange<255; ipRange++)
{
 if (ipRange != myLastAddrByte)
 {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 60/221

You can also assign to an IPAddress from an array of uint8's or a 32-bit unsigned integer.

Finally IPAddress can be used directly with print.

Create a server that listens for incoming connections on the specified port.

Parameters: port : the port to listen on (int)

TCPServer

 localIP[3] = ipRange;
 WiFi.ping(localIP);
 }
}

IPAddress IPfromInt; // 10.0.0.2 as 10*256^3+0*256^2+0*256+2
IPfromInt = 167772162UL;
uint8_t server[] = { 10, 0, 0, 2};
IPAddress IPfromBytes;
IPfromBytes = server;

// PRINT THE DEVICE'S IP ADDRESS IN
// THE FORMAT 192.168.0.10
IPAddress myIP = WiFi.localIP();
Serial.println(myIP); // prints the device's IP address

// SYNTAX
TCPServer server = TCPServer(port);

// EXAMPLE USAGE

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 61/221

Tells the server to begin listening for incoming connections.

begin()

// telnet defaults to port 23
TCPServer server = TCPServer(23);
TCPClient client;

void setup()
{
 // start listening for clients
 server.begin();

 // Make sure your Serial Terminal app is closed before powering your
device
 Serial.begin(9600);
 // Wait for a USB serial connection for up to 30 seconds
 waitFor(Serial.isConnected, 30000);

 Serial.println(WiFi.localIP());
 Serial.println(WiFi.subnetMask());
 Serial.println(WiFi.gatewayIP());
 Serial.println(WiFi.SSID());
}

void loop()
{
 if (client.connected()) {
 // echo all available bytes back to the client
 while (client.available()) {
 server.write(client.read());
 }
 } else {
 // if no client is yet connected, check for a new connection
 client = server.available();
 }
}

// SYNTAX
server.begin();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 62/221

Gets a client that is connected to the server and has data available for reading. The

connection persists when the returned client object goes out of scope; you can close it by

calling client.stop() .

available() inherits from the Stream utility class.

Write data to the last client that connected to a server. This data is sent as a byte or series

of bytes. This function is blocking by default and may block the application thread

indefinitely until all the data is sent.

Since 0.7.0

The application code may additionally check if an error occurred during the last write()

call by checking getWriteError() return value. Any non-zero error code indicates and

error during write operation.

Parameters:

val : a value to send as a single byte (byte or char)

buf : an array to send as a series of bytes (byte or char)

len : the length of the buffer

Returns: size_t : the number of bytes written

NOTE: write() currently may return negative error codes. This behavior will change in the

next major release (0.9.0). Applications will be required to use getWriteError() to check

for write errors.

available()

write()

// SYNTAX
server.write(val);
server.write(buf, len);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 63/221

Print data to the last client connected to a server. Prints numbers as a sequence of digits,

each an ASCII character (e.g. the number 123 is sent as the three characters '1', '2', '3').

Parameters:

data : the data to print (char, byte, int, long, or string)

BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for

decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).

Returns: size_t : the number of bytes written

Print data, followed by a newline, to the last client connected to a server. Prints numbers as

a sequence of digits, each an ASCII character (e.g. the number 123 is sent as the three

characters '1', '2', '3').

Parameters:

data (optional): the data to print (char, byte, int, long, or string)

BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for

decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).

print()

println()

getWriteError()

// SYNTAX
server.print(data);
server.print(data, BASE);

// SYNTAX
server.println();
server.println(data);
server.println(data, BASE) ;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 64/221

Get the error code of the most recent write() operation.

Returns: int 0 when everything is ok, a non-zero error code in case of an error.

This value is updated every after every call to write() or can be manually cleared by

clearWriteError()

Clears the error code of the most recent write() operation setting it to 0 . This function is

automatically called by write() .

clearWriteError() does not return anything.

(inherits from Stream via Client)

Creates a client which can connect to a specified internet IP address and port (defined in

the client.connect() function).

clearWriteError()

TCPClient

// SYNTAX
int err = server.getWriteError();

// EXAMPLE
TCPServer server;
// Write in non-blocking mode to the last client that connected to the
server
int bytes = server.write(buf, len, 0);
int err = server.getWriteError();
if (err != 0) {
 Log.trace("TCPServer::write() failed (error = %d), number of bytes
written: %d", err, bytes);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 65/221

// SYNTAX
TCPClient client;

// EXAMPLE USAGE

TCPClient client;
byte server[] = { 74, 125, 224, 72 }; // Google
void setup()
{
 // Make sure your Serial Terminal app is closed before powering your
device
 Serial.begin(9600);
 // Wait for a USB serial connection for up to 30 seconds
 waitFor(Serial.isConnected, 30000);

 Serial.println("connecting...");

 if (client.connect(server, 80))
 {
 Serial.println("connected");
 client.println("GET /search?q=unicorn HTTP/1.0");
 client.println("Host: www.google.com");
 client.println("Content-Length: 0");
 client.println();
 }
 else
 {
 Serial.println("connection failed");
 }
}

void loop()
{
 if (client.available())
 {
 char c = client.read();
 Serial.print(c);
 }

 if (!client.connected())

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 66/221

Whether or not the client is connected. Note that a client is considered connected if the

connection has been closed but there is still unread data.

Returns true if the client is connected, false if not.

Returns true if the network socket is open and the underlying network is ready.

This is different than connected() which returns true if the socket is closed but there is still

unread buffered data, available() is non-zero.

Connects to a specified IP address and port. The return value indicates success or failure.

Also supports DNS lookups when using a domain name.

connected()

status()

connect()

 {
 Serial.println();
 Serial.println("disconnecting.");
 client.stop();
 for(;;);
 }
}

// SYNTAX
client.connected();

// SYNTAX
client.status();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 67/221

Parameters:

ip : the IP address that the client will connect to (array of 4 bytes)

hostname : the host name the client will connect to (string, ex.:"particle.io")

port : the port that the client will connect to (int)

Returns true if the connection succeeds, false if not.

Write data to the server the client is connected to. This data is sent as a byte or series of

bytes. This function is blocking by default and may block the application thread indefinitely

until all the data is sent.

Since 0.7.0

The application code may additionally check if an error occurred during the last write()

call by checking getWriteError() return value. Any non-zero error code indicates and

error during write operation.

Parameters:

val : a value to send as a single byte (byte or char)

buf : an array to send as a series of bytes (byte or char)

len : the length of the buffer

write()

// SYNTAX
client.connect();
client.connect(ip, port);
client.connect(hostname, port);

// SYNTAX
client.write(val);
client.write(buf, len);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 68/221

Returns: size_t : write() returns the number of bytes written.

NOTE: write() currently may return negative error codes. This behavior will change in the

next major release (0.9.0). Applications will be required to use getWriteError() to check

for write errors.

Print data to the server that a client is connected to. Prints numbers as a sequence of digits,

each an ASCII character (e.g. the number 123 is sent as the three characters '1', '2', '3').

Parameters:

data : the data to print (char, byte, int, long, or string)

BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for

decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).

Returns: byte : print() will return the number of bytes written, though reading that

number is optional

Print data, followed by a carriage return and newline, to the server a client is connected to.

Prints numbers as a sequence of digits, each an ASCII character (e.g. the number 123 is

sent as the three characters '1', '2', '3').

Parameters:

print()

println()

// SYNTAX
client.print(data);
client.print(data, BASE) ;

// SYNTAX
client.println();
client.println(data);
client.println(data, BASE) ;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 69/221

data (optional): the data to print (char, byte, int, long, or string)

BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for

decimal (base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).

Returns the number of bytes available for reading (that is, the amount of data that has been

written to the client by the server it is connected to).

Returns the number of bytes available.

Read the next byte received from the server the client is connected to (after the last call to

read()).

Returns the next byte (or character), or -1 if none is available.

or int read(uint8_t *buffer, size_t size) reads all readily available bytes up to size

from the server the client is connected to into the provided buffer .

Returns the number of bytes (or characters) read into buffer .

available()

read()

// SYNTAX
client.available();

// SYNTAX
client.read();

// SYNTAX
bytesRead = client.read(buffer, length);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 70/221

Waits until all outgoing data in buffer has been sent.

NOTE: That this function does nothing at present.

Since 0.4.5:

Retrieves the remote IPAddress of a connected TCPClient . When the TCPClient is

retrieved from TCPServer.available() (where the client is a remote client connecting to a

local server) the IPAddress gives the remote address of the connecting client.

When TCPClient was created directly via TCPClient.connect() , then remoteIP returns the

remote server the client is connected to.

flush()

remoteIP()

// SYNTAX
client.flush();

// EXAMPLE - TCPClient from TCPServer

TCPServer server(80);
// ...

void setup()
{
 Serial.begin(9600);
 server.begin(80);
}

void loop()
{
 // check for a new client to our server
 TCPClient client = server.available();
 if (client.connected())
 {
 // we got a new client

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 71/221

Disconnect from the server.

Get the error code of the most recent write() operation.

Returns: int 0 when everything is ok, a non-zero error code in case of an error.

This value is updated every after every call to write() or can be manually cleared by

clearWriteError()

stop()

getWriteError()

 // find where the client's remote address
 IPAddress clientIP = client.remoteIP();
 // print the address to Serial
 Serial.println(clientIP);
 }
}

// EXAMPLE - TCPClient.connect()

TCPClient client;
client.connect("www.google.com", 80);
if (client.connected())
{
 IPAddress clientIP = client.remoteIP();
 // IPAddress equals whatever www.google.com resolves to
}

// SYNTAX
client.stop();

// SYNTAX
int err = client.getWriteError();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 72/221

Clears the error code of the most recent write() operation setting it to 0 . This function is

automatically called by write() .

clearWriteError() does not return anything.

(inherits from Stream and Printable)

This class enables UDP messages to be sent and received.

clearWriteError()

UDP

// EXAMPLE
TCPClient client;
// Write in non-blocking mode
int bytes = client.write(buf, len, 0);
int err = client.getWriteError();
if (err != 0) {
 Log.trace("TCPClient::write() failed (error = %d), number of bytes
written: %d", err, bytes);
}

// EXAMPLE USAGE

// UDP Port used for two way communication
unsigned int localPort = 8888;

// An UDP instance to let us send and receive packets over UDP
UDP Udp;

void setup() {
 // start the UDP
 Udp.begin(localPort);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 73/221

Note that UDP does not guarantee that messages are always delivered, or that they are
delivered in the order supplied. In cases where your application requires a reliable
connection, TCPClient is a simpler alternative.

There are two primary ways of working with UDP - buffered operation and unbuffered

operation.

1. buffered operation allows you to read and write packets in small pieces, since the

system takes care of allocating the required buffer to hold the entire packet.

to read a buffered packet, call parsePacket , then use available and read to

retrieve the packet received

to write a buffered packet, optionally call setBuffer to set the maximum size of the

packet (the default is 512 bytes), followed by beginPacket , then as many calls to

 // Print your device IP Address via serial
 Serial.begin(9600);
 Serial.println(WiFi.localIP());
}

void loop() {
 // Check if data has been received
 if (Udp.parsePacket() > 0) {

 // Read first char of data received
 char c = Udp.read();

 // Ignore other chars
 while(Udp.available())
 Udp.read();

 // Store sender ip and port
 IPAddress ipAddress = Udp.remoteIP();
 int port = Udp.remotePort();

 // Echo back data to sender
 Udp.beginPacket(ipAddress, port);
 Udp.write(c);
 Udp.endPacket();
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 74/221

write / print as necessary to build the packet contents, followed finally by end to

send the packet over the network.

2. unbuffered operation allows you to read and write entire packets in a single operation -

your application is responsible for allocating the buffer to contain the packet to be sent

or received over the network.

to read an unbuffered packet, call receivePacket with a buffer to hold the received

packet.

to write an unbuffered packet, call sendPacket with the packet buffer to send, and

the destination address.

Initializes the UDP library and network settings.

Get the number of bytes (characters) available for reading from the buffer. This is data

that's already arrived.

This function can only be successfully called after UDP.parsePacket() .

available() inherits from the Stream utility class.

Returns the number of bytes available to read.

Starts a connection to write UDP data to the remote connection.

begin()

available()

beginPacket()

// SYNTAX
Udp.begin(port);

// SYNTAX
int count = Udp.available();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 75/221

Parameters:

remoteIP : the IP address of the remote connection (4 bytes)

remotePort : the port of the remote connection (int)

It returns nothing.

Called after writing buffered UDP data using write() or print() . The buffered data is then

sent to the remote UDP peer.

Parameters: NONE

Writes UDP data to the buffer - no data is actually sent. Must be wrapped between

beginPacket() and endPacket() . beginPacket() initializes the packet of data, it is not sent

until endPacket() is called.

Parameters:

message : the outgoing message (char)

endPacket()

write()

// SYNTAX
Udp.beginPacket(remoteIP, remotePort);

// SYNTAX
Udp.endPacket();

// SYNTAX
Udp.write(message);
Udp.write(buffer, size);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 76/221

buffer : an array to send as a series of bytes (byte or char)

size : the length of the buffer

Returns:

byte : returns the number of characters sent. This does not have to be read

Checks for the presence of a UDP packet and returns the size. Note that it is possible to

receive a valid packet of zero bytes, this will still return the sender's address and port after

the call to receivePacket().

Parameters:

buffer : the buffer to hold any received bytes (uint8_t).

size : the size of the buffer.

receivePacket()

// SYNTAX
size = Udp.receivePacket(buffer, size);
// EXAMPLE USAGE - get a string without buffer copy
UDP Udp;
char message[128];
int port = 8888;
int rxError = 0;

Udp.begin (port);
int count = Udp.receivePacket((byte*)message, 127);
if (count >= 0 && count < 128) {
 message[count] = 0;
 rxError = 0;
} else if (count < -1) {
 rxError = count;
 // need to re-initialize on error
 Udp.begin(port);
}
if (!rxError) {
 Serial.println (message);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 77/221

Returns:

int : on success the size (greater then or equal to zero) of a received UDP packet. On

failure the internal error code.

Checks for the presence of a UDP packet, and reports the size. parsePacket() must be

called before reading the buffer with UDP.read() .

Parameters: NONE

Returns:

int : the size of a received UDP packet

Reads UDP data from the specified buffer. If no arguments are given, it will return the next

character in the buffer.

This function can only be successfully called after UDP.parsePacket() .

Parameters:

packetBuffer : buffer to hold incoming packets (char)

MaxSize : maximum size of the buffer (int)

parsePacket()

read()

// SYNTAX
size = Udp.parsePacket();

// SYNTAX
count = Udp.read();
count = Udp.read(packetBuffer, MaxSize);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 78/221

Returns:

int : returns the character in the buffer or -1 if no character is available

Waits until all outgoing data in buffer has been sent.

NOTE: That this function does nothing at present.

Disconnect from the server. Release any resource being used during the UDP session.

Parameters: NONE

Returns the IP address of sender of the packet parsed by

Udp.parsePacket() / Udp.receivePacket() .

Parameters: NONE

Returns:

flush()

stop()

remoteIP()

// SYNTAX
Udp.flush();

// SYNTAX
Udp.stop();

// SYNTAX
ip = Udp.remoteIP();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 79/221

IPAddress : the IP address of the sender of the packet parsed by

Udp.parsePacket() / Udp.receivePacket() .

Returns the port from which the UDP packet was sent. The packet is the one most recently

processed by Udp.parsePacket() / Udp.receivePacket() .

Parameters: NONE

Returns:

int : the port from which the packet parsed by

Udp.parsePacket() / Udp.receivePacket() was sent.

Since 0.4.5:

Initializes the buffer used by a UDP instance for buffered reads/writes. The buffer is used

when your application calls beginPacket() and parsePacket() . If setBuffer() isn't called,

the buffer size defaults to 512 bytes, and is allocated when buffered operation is initialized

via beginPacket() or parsePacket() .

remotePort()

setBuffer()

// SYNTAX
int port = Udp.remotePort();

// SYNTAX
Udp.setBuffer(size); // dynamically allocated buffer
Udp.setBuffer(size, buffer); // application provided buffer

// EXAMPLE USAGE - dynamically allocated buffer
UDP Udp;

// uses a dynamically allocated buffer that is 1024 bytes in size
if (!Udp.setBuffer(1024))
{
 // on no, couldn't allocate the buffer

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 80/221

Parameters:

unsigned int : the size of the buffer

pointer : the buffer. If not provided, or NULL the system will attempt to allocate a

buffer of the size requested.

Returns:

true when the buffer was successfully allocated, false if there was insufficient

memory. (For application-provided buffers the function always returns true .)

Since 0.4.5:

Releases the buffer previously set by a call to setBuffer() .

This is typically required only when performing advanced memory management and the
UDP instance is not scoped to the lifetime of the application.

releaseBuffer()

}
else
{
 // 'tis good!
}

// EXAMPLE USAGE - application-provided buffer
UDP Udp;

char appBuffer[800];
Udp.setBuffer(800, appBuffer);

// SYNTAX
Udp.releaseBuffer();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 81/221

Since 0.4.5:

Sends a packet, unbuffered, to a remote UDP peer.

Parameters:

pointer (buffer): the buffer of data to send

int (bufferSize): the number of bytes of data to send

IPAddress (remoteIP): the destination address of the remote peer

int (remotePort): the destination port of the remote peer

Returns:

int : The number of bytes written. Negative value on error.

sendPacket()

// SYNTAX
Udp.sendPacket(buffer, bufferSize, remoteIP, remotePort);

// EXAMPLE USAGE
UDP Udp;

char buffer[] = "Particle powered";

IPAddress remoteIP(192, 168, 1, 100);
int port = 1337;

void setup() {
 // Required for two way communication
 Udp.begin(8888);

 if (Udp.sendPacket(buffer, sizeof(buffer), remoteIP, port) < 0) {
 Particle.publish("Error");
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 82/221

This library allows your device to control RC (hobby) servo motors. Servos have integrated

gears and a shaft that can be precisely controlled. Standard servos allow the shaft to be

positioned at various angles, usually between 0 and 180 degrees. Continuous rotation

servos allow the rotation of the shaft to be set to various speeds.

This example uses pin D0, but D0 cannot be used for Servo on all devices.

Servo

// EXAMPLE CODE

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position

void setup()
{
 myservo.attach(D0); // attaches the servo on the D0 pin to the servo
object
 // Only supported on pins that have PWM
}

void loop()
{
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in
variable 'pos'
 delay(15); // waits 15ms for the servo to reach
the position
 }
 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
 {
 myservo.write(pos); // tell servo to go to position in
variable 'pos'
 delay(15); // waits 15ms for the servo to reach
the position
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 83/221

NOTE: Unlike Arduino, you do not need to include Servo.h ; it is included automatically.

Set up a servo on a particular pin. Note that, Servo can only be attached to pins with a

timer.

on the Core, Servo can be connected to A0, A1, A4, A5, A6, A7, D0, and D1.

on the Photon, Servo can be connected to A4, A5, WKP, RX, TX, D0, D1, D2, D3

on the P1, Servo can be connected to A4, A5, WKP, RX, TX, D0, D1, D2, D3, P1S0,

P1S1

on the Electron, Servo can be connected to A4, A5, WKP, RX, TX, D0, D1, D2, D3, B0,

B1, B2, B3, C4, C5

on Gen 3 Argon, Boron, and Xenon devices, pin A0, A1, A2, A3, D2, D3, D4, D5, D6,

and D8 can be used for Servo.

On Gen 3 B Series SoM devices, pins A0, A1, A6, A7, D4, D5, and D6 can be used for

Servo.

Writes a value to the servo, controlling the shaft accordingly. On a standard servo, this will

set the angle of the shaft (in degrees), moving the shaft to that orientation. On a

continuous rotation servo, this will set the speed of the servo (with 0 being full-speed in

one direction, 180 being full speed in the other, and a value near 90 being no movement).

attach()

write()

// SYNTAX
servo.attach(pin)

// SYNTAX
servo.write(angle)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 84/221

Writes a value in microseconds (uS) to the servo, controlling the shaft accordingly. On a

standard servo, this will set the angle of the shaft. On standard servos a parameter value of

1000 is fully counter-clockwise, 2000 is fully clockwise, and 1500 is in the middle.

Note that some manufactures do not follow this standard very closely so that servos often

respond to values between 700 and 2300. Feel free to increase these endpoints until the

servo no longer continues to increase its range. Note however that attempting to drive a

servo past its endpoints (often indicated by a growling sound) is a high-current state, and

should be avoided.

Continuous-rotation servos will respond to the writeMicrosecond function in an analogous

manner to the write function.

Read the current angle of the servo (the value passed to the last call to write()). Returns an

integer from 0 to 180 degrees.

Check whether the Servo variable is attached to a pin. Returns a boolean.

writeMicroseconds()

read()

attached()

// SYNTAX
servo.writeMicroseconds(uS)

// SYNTAX
servo.read()

// SYNTAX
servo.attached()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 85/221

Detach the Servo variable from its pin.

Sets a trim value that allows minute timing adjustments to correctly calibrate 90 as the

stationary point.

The device synchronizes time with the Particle Device Cloud during the handshake. From

then, the time is continually updated on the device. This reduces the need for external

libraries to manage dates and times.

Before the device gets online and for short intervals, you can use the millis() and

micros() functions.

detach()

setTrim()

Time

millis()

// SYNTAX
servo.detach()

// SYNTAX

// shortens the pulses sent to the servo
servo.setTrim(-3);

// a larger trim value
servo.setTrim(30);

// removes any previously configured trim
servo.setTrim(0);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 86/221

Returns the number of milliseconds since the device began running the current program.

This number will overflow (go back to zero), after approximately 49 days.

unsigned long time = millis();

Note: The return value for millis is an unsigned long, errors may be generated if a

programmer tries to do math with other data types such as ints.

Returns the number of microseconds since the device booted.

unsigned long time = micros();

micros()

// EXAMPLE USAGE

unsigned long time;

void setup()
{
 Serial.begin(9600);
}
void loop()
{
 Serial.print("Time: ");
 time = millis();
 //prints time since program started
 Serial.println(time);
 // wait a second so as not to send massive amounts of data
 delay(1000);
}

// EXAMPLE USAGE

unsigned long time;

void setup()
{
 Serial.begin(9600);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 87/221

In Device OS v0.4.3 and earlier this number will overflow (go back to zero), after exactly

59,652,323 microseconds (0 .. 59,652,322) on the Core and after exactly 35,791,394

microseconds (0 .. 35,791,394) on the Photon and Electron. In newer Device OS versions, it

overflows at the maximum 32-bit unsigned long value.

Pauses the program for the amount of time (in milliseconds) specified as parameter. (There

are 1000 milliseconds in a second.)

ms is the number of milliseconds to pause (unsigned long)

delay()

void loop()
{
 Serial.print("Time: ");
 time = micros();
 //prints time since program started
 Serial.println(time);
 // wait a second so as not to send massive amounts of data
 delay(1000);
}

// SYNTAX
delay(ms);

// EXAMPLE USAGE

int ledPin = D1; // LED connected to digital pin D1

void setup()
{
 pinMode(ledPin, OUTPUT); // sets the digital pin as output
}

void loop()
{
 digitalWrite(ledPin, HIGH); // sets the LED on
 delay(1000); // waits for a second

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 88/221

NOTE: the parameter for millis is an unsigned long, errors may be generated if a

programmer tries to do math with other data types such as ints.

Pauses the program for the amount of time (in microseconds) specified as parameter.

There are a thousand microseconds in a millisecond, and a million microseconds in a

second.

us is the number of microseconds to pause (unsigned int)

delayMicroseconds()

 digitalWrite(ledPin, LOW); // sets the LED off
 delay(1000); // waits for a second
}

// SYNTAX
delayMicroseconds(us);

// EXAMPLE USAGE

int outPin = D1; // digital pin D1

void setup()
{
 pinMode(outPin, OUTPUT); // sets the digital pin as output
}

void loop()
{
 digitalWrite(outPin, HIGH); // sets the pin on
 delayMicroseconds(50); // pauses for 50 microseconds
 digitalWrite(outPin, LOW); // sets the pin off
 delayMicroseconds(50); // pauses for 50 microseconds
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 89/221

Retrieve the hour for the current or given time. Integer is returned without a leading zero.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 0-23

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice.

Retrieve the hour in 12-hour format for the current or given time. Integer is returned

without a leading zero.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 1-12

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice.

hour()

hourFormat12()

// Print the hour for the current time
Serial.print(Time.hour());

// Print the hour for the given time, in this case: 4
Serial.print(Time.hour(1400647897));

// Print the hour in 12-hour format for the current time
Serial.print(Time.hourFormat12());

// Print the hour in 12-hour format for a given time, in this case: 3
Serial.print(Time.hourFormat12(1400684400));

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 90/221

Returns true if the current or given time is AM.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Unsigned 8-bit integer: 0 = false, 1 = true

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice,

potentially causing AM/PM to be calculated incorrectly.

Returns true if the current or given time is PM.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Unsigned 8-bit integer: 0 = false, 1 = true

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice,

potentially causing AM/PM to be calculated incorrectly.

isAM()

isPM()

// Print true or false depending on whether the current time is AM
Serial.print(Time.isAM());

// Print whether the given time is AM, in this case: true
Serial.print(Time.isAM(1400647897));

// Print true or false depending on whether the current time is PM
Serial.print(Time.isPM());

// Print whether the given time is PM, in this case: false
Serial.print(Time.isPM(1400647897));

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 91/221

Retrieve the minute for the current or given time. Integer is returned without a leading

zero.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 0-59

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice.

Retrieve the seconds for the current or given time. Integer is returned without a leading

zero.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 0-59

minute()

second()

day()

// Print the minute for the current time
Serial.print(Time.minute());

// Print the minute for the given time, in this case: 51
Serial.print(Time.minute(1400647897));

// Print the second for the current time
Serial.print(Time.second());

// Print the second for the given time, in this case: 51
Serial.print(Time.second(1400647897));

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 92/221

Retrieve the day for the current or given time. Integer is returned without a leading zero.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 1-31

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice,

potentially causing an incorrect date.

Retrieve the weekday for the current or given time.

1 = Sunday

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

weekday()

// Print the day for the current time
Serial.print(Time.day());

// Print the day for the given time, in this case: 21
Serial.print(Time.day(1400647897));

// Print the weekday number for the current time
Serial.print(Time.weekday());

// Print the weekday for the given time, in this case: 4
Serial.print(Time.weekday(1400647897));

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 93/221

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 1-7

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice,

potentially causing an incorrect day of week.

Retrieve the month for the current or given time. Integer is returned without a leading zero.

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer 1-12

If you have set a timezone using zone(), beginDST(), etc. the hour returned will be local

time. You must still pass in UTC time, otherwise the time offset will be applied twice,

potentially causing an incorrect date.

Retrieve the 4-digit year for the current or given time.

month()

year()

// Print the month number for the current time
Serial.print(Time.month());

// Print the month for the given time, in this case: 5
Serial.print(Time.month(1400647897));

// Print the current year
Serial.print(Time.year());

// Print the year for the given time, in this case: 2014
Serial.print(Time.year(1400647897));

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 94/221

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

Returns: Integer

Retrieve the current time as seconds since January 1, 1970 (commonly known as "Unix

time" or "epoch time"). This time is not affected by the timezone setting, it's coordinated

universal time (UTC).

Returns: time_t (Unix timestamp), coordinated universal time (UTC), long integer (32-bit)

Retrieve the current time in the configured timezone as seconds since January 1, 1970

(commonly known as "Unix time" or "epoch time"). This time is affected by the timezone

setting.

Note that the functions in the Time class expect times in UTC time, so the result from this

should be used carefully. You should not pass Time.local() to Time.format(), for example.

Since 0.6.0

Local time is also affected by the Daylight Saving Time (DST) settings.

Set the time zone offset (+/-) from UTC. The device will remember this offset until reboot.

NOTE: This function does not observe daylight savings time.

now()

local()

zone()

// Print the current Unix timestamp
Serial.print(Time.now()); // 1400647897

// Set time zone to Eastern USA daylight saving time
Time.zone(-4);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 95/221

Parameters: floating point offset from UTC in hours, from -12.0 to 14.0

Since 0.6.0:

Returns true if Daylight Saving Time (DST) is in effect.

Returns: Unsigned 8-bit integer: 0 = false, 1 = true

This function only returns the current DST setting that you choose using beginDST() or

endDST(). The setting does not automatically change based on the calendar date.

Since 0.6.0:

Retrieve the current Daylight Saving Time (DST) offset that is added to the current local

time when Time.beginDST() has been called. The default is 1 hour.

Returns: floating point DST offset in hours (default is +1.0 hours)

Since 0.6.0:

Set a custom Daylight Saving Time (DST) offset. The device will remember this offset until

reboot.

isDST()

getDSTOffset()

setDSTOffset()

// Print true or false depending on whether the DST in in effect
Serial.print(Time.isDST());

// Get current DST offset
float offset = Time.getDSTOffset();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 96/221

Parameters: floating point offset in hours, from 0.0 to 2.0

Since 0.6.0:

Start applying Daylight Saving Time (DST) offset to the current time.

You must call beginDST() at startup if you want use DST mode. The setting is not

remembered and is not automatically changed based on the calendar.

Since 0.6.0:

Stop applying Daylight Saving Time (DST) offset to the current time.

You must call endDST() on the appropriate date to end DST mode. It is not calculated

automatically.

Set the system time to the given timestamp.

NOTE: This will override the time set by the Particle Device Cloud. If the cloud connection

drops, the reconnection handshake will set the time again

Also see: Particle.syncTime()

Parameter: time_t (Unix timestamp), coordinated universal time (UTC), long integer

beginDST()

endDST()

setTime()

// Set DST offset to 30 minutes
Time.setDSTOffset(0.5);

// Set the time to 2014-10-11 13:37:42
Time.setTime(1413034662);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 97/221

Return string representation for the given time.

Returns: String

NB: In 0.3.4 and earlier, this function included a newline at the end of the returned string.
This has been removed in 0.4.0.

Formats a time string using a configurable format.

The formats available are:

TIME_FORMAT_DEFAULT

TIME_FORMAT_ISO8601_FULL

custom format based on strftime()

timeStr()

format()

Serial.print(Time.timeStr()); // Wed May 21 01:08:47 2014

// SYNTAX
Time.format(time, strFormat); // fully qualified (e.g. current time with
custom format)
Time.format(strFormat); // current time with custom format
Time.format(time); // custom time with preset format
Time.format(); // current time with preset format

// EXAMPLE
time_t time = Time.now();
Time.format(time, TIME_FORMAT_DEFAULT); // Sat Jan 10 08:22:04 2004 , same
as Time.timeStr()

Time.zone(-5.25); // setup a time zone, which is part of the ISO8601 format
Time.format(time, TIME_FORMAT_ISO8601_FULL); // 2004-01-10T08:22:04-05:15

http://www.cplusplus.com/reference/ctime/strftime/

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 98/221

Optional parameter: time_t (Unix timestamp), coordinated universal time (UTC), long

integer

If you have set the time zone using Time.zone(), beginDST(), etc. the formatted time will be

formatted in local time.

Note: The custom time provided to Time.format() needs to be UTC based and not contain

the time zone offset (as Time.local() would), since the time zone correction is performed

by the high level Time methods internally.

Sets the format string that is the default value used by format() .

In more advanced cases, you can set the format to a static string that follows the same

syntax as the strftime() function.

Retrieves the currently configured format string for time formatting with format() .

Since 0.6.1:

setFormat()

getFormat()

isValid()

Time.setFormat(TIME_FORMAT_ISO8601_FULL);

// custom formatting

Time.format(Time.now(), "Now it's %I:%M%p.");
// Now it's 03:21AM.

// SYNTAX
Time.isValid();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 99/221

Used to check if current time is valid. This function will return true if:

Time has been set manually using Time.setTime()

Time has been successfully synchronized with the Particle Device Cloud. The device

synchronizes time with the Particle Device Cloud during the handshake. The

application may also manually synchronize time with Particle Device Cloud using

Particle.syncTime()

Correct time has been maintained by RTC.

NOTE: When Raspberry Pi is running in AUTOMATIC mode this function will block if current

time is not valid and there is an active connection to Particle Device Cloud. Once

Raspberry Pi synchronizes the time with Particle Device Cloud or the connection to Particle

Device Cloud is lost, Time.isValid() will return its current state. This function is also

implicitly called by any Time function that returns current time or date (e.g.

Time.hour() / Time.now() /etc).

Advanced

// Print true or false depending on whether current time is valid
Serial.print(Time.isValid());

void setup()
{
 // Wait for time to be synchronized with Particle Device Cloud (requires
active connection)
 waitFor(Time.isValid, 60000);
}

void loop()
{
 // Print current time
 Serial.println(Time.timeStr());
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 100/221

For more advanced date parsing, formatting, normalization and manipulation functions,

use the C standard library time functions like mktime . See the note about the standard

library on the Raspberry Pi and the description of the C standard library time functions.

Since 0.4.9:

A class member function can be used as a callback using this syntax to create the timer:

Timer timer(period, callback, instance, one_shot)

period is the period of the timer in milliseconds (unsigned int)

callback is the class member function which gets called when the timer expires.

instance the instance of the class to call the callback function on.

one_shot (optional, since 0.4.9) when true , the timer is fired once and then stopped

automatically. The default is false - a repeating timer.

Starts a stopped timer (a newly created timer is stopped). If start() is called for a running

timer, it will be reset.

start()

Class member callbacks

start()

// Class member function callback example

class CallbackClass
{
public:
 void onTimeout();
}

CallbackClass callback;
Timer t(1000, &CallbackClass::onTimeout, callback);

https://en.wikipedia.org/wiki/C_date_and_time_functions

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 101/221

Stops a running timer.

stop()

Changes the period of a previously created timer. It can be called to change the period of

an running or stopped timer. Note that changing the period of a dormant timer will also

start the timer.

changePeriod(newPeriod)

newPeriod is the new timer period (unsigned int)

Resets a timer. If a timer is running, it will reset to "zero". If a timer is stopped, it will be

started.

reset()

stop()

changePeriod()

reset()

// EXAMPLE USAGE
timer.start(); // starts timer if stopped or resets it if started.

// EXAMPLE USAGE
timer.stop(); // stops a running timer.

// EXAMPLE USAGE
timer.changePeriod(1000); // Reset period of timer to 1000ms.

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 102/221

startFromISR() stopFromISR() resetFromISR() changePeriodFromISR()

Start, stop and reset a timer or change a timer's period (as above) BUT from within an ISR.

These functions MUST be called when doing timer operations within an ISR.

dispose()

Stop and remove a timer from the (max. 10) timer list, freeing a timer "slot" in the list.

startFromISR()

stopFromISR()

resetFromISR()

changePeriodFromISR()

dispose()

// EXAMPLE USAGE
timer.reset(); // reset timer if running, or start timer if stopped.

// EXAMPLE USAGE
timer.startFromISR(); // WITHIN an ISR, starts timer if stopped or resets it
if started.

timer.stopFromISR(); // WITHIN an ISR,stops a running timer.

timer.resetFromISR(); // WITHIN an ISR, reset timer if running, or start
timer if stopped.

timer.changePeriodFromISR(newPeriod); // WITHIN an ISR, change the timer
period.

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 103/221

Since 0.5.0:

bool isActive()

Returns true if the timer is in active state (pending), or false otherwise.

Note that in addition to functions outlined below all of the newlib math functions

described at sourceware.org are also available for use by simply including the math.h

header file thus:

#include "math.h"

Calculates the minimum of two numbers.

min(x, y)

x is the first number, any data type y is the second number, any data type

The functions returns the smaller of the two numbers.

isActive()

Math

min()

// EXAMPLE USAGE
timer.dispose(); // stop and delete timer from timer list.

// EXAMPLE USAGE
if (timer.isActive()) {
 // ...
}

https://sourceware.org/newlib/libm.html

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 104/221

NOTE: Perhaps counter-intuitively, max() is often used to constrain the lower end of a

variable's range, while min() is used to constrain the upper end of the range.

WARNING: Because of the way the min() function is implemented, avoid using other

functions inside the brackets, it may lead to incorrect results

Calculates the maximum of two numbers.

max(x, y)

x is the first number, any data type y is the second number, any data type

The functions returns the larger of the two numbers.

NOTE: Perhaps counter-intuitively, max() is often used to constrain the lower end of a

variable's range, while min() is used to constrain the upper end of the range.

max()

// EXAMPLE USAGE
sensVal = min(sensVal, 100); // assigns sensVal to the smaller of sensVal or
100
 // ensuring that it never gets above 100.

min(a++, 100); // avoid this - yields incorrect results

a++;
min(a, 100); // use this instead - keep other math outside the function

// EXAMPLE USAGE
sensVal = max(senVal, 20); // assigns sensVal to the larger of sensVal or 20
 // (effectively ensuring that it is at least 20)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 105/221

WARNING: Because of the way the max() function is implemented, avoid using other

functions inside the brackets, it may lead to incorrect results

Computes the absolute value of a number.

abs(x);

where x is the number

The function returns x if x is greater than or equal to 0 and returns -x if x is less than 0 .

WARNING: Because of the way the abs() function is implemented, avoid using other

functions inside the brackets, it may lead to incorrect results.

Constrains a number to be within a range.

constrain(x, a, b);

x is the number to constrain, all data types a is the lower end of the range, all data types

b is the upper end of the range, all data types

abs()

constrain()

max(a--, 0); // avoid this - yields incorrect results

a--; // use this instead -
max(a, 0); // keep other math outside the function

abs(a++); // avoid this - yields incorrect results

a++; // use this instead -
abs(a); // keep other math outside the function

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 106/221

The function will return: x : if x is between a and b a : if x is less than a b : if x is greater

than b

Re-maps a number from one range to another. That is, a value of fromLow would get

mapped to toLow , a value of fromHigh to toHigh , values in-between to values in-

between, etc.

map(value, fromLow, fromHigh, toLow, toHigh);

Does not constrain values to within the range, because out-of-range values are sometimes

intended and useful. The constrain() function may be used either before or after this

function, if limits to the ranges are desired.

Note that the "lower bounds" of either range may be larger or smaller than the "upper

bounds" so the map() function may be used to reverse a range of numbers, for example

y = map(x, 1, 50, 50, 1);

map()

// EXAMPLE USAGE
sensVal = constrain(sensVal, 10, 150);
// limits range of sensor values to between 10 and 150

// EXAMPLE USAGE

// Map an analog value to 8 bits (0 to 255)
void setup() {
 pinMode(D1, OUTPUT);
}

void loop()
{
 int val = analogRead(A0);
 val = map(val, 0, 4095, 0, 255);
 analogWrite(D1, val);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 107/221

The function also handles negative numbers well, so that this example

y = map(x, 1, 50, 50, -100);

is also valid and works well.

When called with integers, the map() function uses integer math so will not generate

fractions, when the math might indicate that it should do so. Fractional remainders are

truncated, not rounded.

Parameters can either be integers or floating point numbers:

value : the number to map

fromLow : the lower bound of the value's current range

fromHigh : the upper bound of the value's current range

toLow : the lower bound of the value's target range

toHigh : the upper bound of the value's target range

The function returns the mapped value, as integer or floating point depending on the

arguments.

Appendix: For the mathematically inclined, here's the whole function

Calculates the value of a number raised to a power. pow() can be used to raise a number

to a fractional power. This is useful for generating exponential mapping of values or curves.

pow(base, exponent);

pow()

int map(int value, int fromStart, int fromEnd, int toStart, int toEnd)
{
 if (fromEnd == fromStart) {
 return value;
 }
 return (value - fromStart) * (toEnd - toStart) / (fromEnd - fromStart) +
toStart;
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 108/221

base is the number (float) exponent is the power to which the base is raised (float)

The function returns the result of the exponentiation (double)

EXAMPLE TBD

Calculates the square root of a number.

sqrt(x)

x is the number, any data type

The function returns the number's square root (double)

The firmware incorporates a pseudo-random number generator.

Retrieves the next random value, restricted to a given range.

random(max);

Parameters

max - the upper limit of the random number to retrieve.

Returns: a random value between 0 and up to, but not including max .

sqrt()

Random Numbers

random()

int r = random(10);
// r is >= 0 and < 10
// The smallest value returned is 0
// The largest value returned is 9

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 109/221

NB: When max is 0, the result is always 0.

random(min,max);

Parameters:

min - the lower limit (inclusive) of the random number to retrieve.

max - the upper limit (exclusive) of the random number to retrieve.

Returns: a random value from min and up to, but not including max .

NB: If min is greater or equal to max , the result is always 0.

randomSeed(newSeed);

Parameters:

newSeed - the new random seed

The pseudorandom numbers produced by the firmware are derived from a single value -

the random seed. The value of this seed fully determines the sequence of random

numbers produced by successive calls to random() . Using the same seed on two separate

runs will produce the same sequence of random numbers, and in contrast, using different

seeds will produce a different sequence of random numbers.

On startup, the default random seed is set by the system to 1. Unless the seed is modified,

the same sequence of random numbers would be produced each time the system starts.

Fortunately, when the device connects to the cloud, it receives a very randomized seed

value, which is used as the random seed. So you can be sure the random numbers

produced will be different each time your program is run.

randomSeed()

int r = random(10, 100);
// r is >= 10 and < 100
// The smallest value returned is 10
// The largest value returned is 99

http://www.cplusplus.com/reference/cstdlib/srand/

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 110/221

Disable random seed from the cloud

When the device receives a new random seed from the cloud, it's passed to this function:

The system implementation of this function calls randomSeed() to set the new seed value. If

you don't wish to use random seed values from the cloud, you can take control of the

random seeds set by adding this code to your app:

In the example, the seed is simply ignored, so the system will continue using whatever

seed was previously set. In this case, the random seed will not be set from the cloud, and

setting the seed is left to up you.

Since 0.4.5:

Typically an application will have its initialization code in the setup() function. This works

well if a delay of a few seconds from power on/reset is acceptable.

In other cases, the application wants to have code run as early as possible, before the

cloud or network connection are initialized. The STARTUP() function instructs the system to

execute the code early on in startup.

Macros

STARTUP()

void random_seed_from_cloud(unsigned int seed);

void random_seed_from_cloud(unsigned int seed) {
 // don't do anything with this. Continue with existing seed.
}

void setup_the_fundulating_conbobulator()
{
 pinMode(D3, OUTPUT);
 digitalWrite(D3, HIGH);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 111/221

The code referenced by STARTUP() is executed very early in the startup sequence, so it's

best suited to initializing digital I/O and peripherals. Networking setup code should still be

placed in setup() .

Note that when startup code performs digital I/O, there will still be a period of at least few
hundred milliseconds where the I/O pins are in their default power-on state, namely INPUT .

Circuits should be designed with this in mind, using pullup/pulldown resistors as
appropriate.

When preparing software for your product, it is essential to include your product ID and

version at the top of the firmware source code.

You can find more details about the product ID and how to get yours in the Console guide.

Since 0.4.9:

PRODUCT_ID()

System Events

System Events Overview

}

// The STARTUP call is placed outside of any other function
// What goes inside is any valid code that can be executed. Here, we use a
function call.
// Using a single function is preferable to having several `STARTUP()`
calls.
STARTUP(setup_the_fundulating_conbobulator());

// EXAMPLE
PRODUCT_ID(94); // replace by your product ID
PRODUCT_VERSION(1); // increment each time you upload to the console

https://docs.particle.io/tutorials/device-cloud/console#your-product-id

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 112/221

System events are messages sent by the system and received by application code. They

inform the application about changes in the system, such as when the system has entered

setup mode (listening mode, blinking dark blue), or when an Over-the-Air (OTA) update

starts, or when the system is about to reset.

System events are received by the application by registering a handler. The handler has

this general format:

Unused parameters can be removed from right to left, giving these additional function

signatures:

Here's an example of an application that listens for reset events so that the application is

notified the device is about to reset. The application publishes a reset message to the

cloud and turns off connected equipment before returning from the handler, allowing the

device to reset.

void handler(system_event_t event, int data, void* moredata);

void handler(system_event_t event, int data);
void handler(system_event_t event);
void handler();

void reset_handler()
{
 // turn off the crankenspitzen
 digitalWrite(D6, LOW);
 // tell the world what we are doing
 Particle.publish("reset", "going down for reboot NOW!");
}

void setup()
{
 // register the reset handler
 System.on(reset, reset_handler);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 113/221

Some event types provide additional information. For example the button_click event

provides a parameter with the number of button clicks:

It's possible to subscribe to multiple events with the same handler in cases where you want

the same handler to be notified for all the events. For example:

To subscribe to all events, there is the placeholder all_events :

Registering multiple events with the same handler

System Events Reference

void button_clicked(system_event_t event, int param)
{
 int times = system_button_clicks(param);
 Serial.printlnf("button was clicked %d times", times);
}

void handle_all_the_events(system_event_t event, int param)
{
 Serial.printlnf("got event %d with value %d", event, param);
}

void setup()
{
 // listen for Wi-Fi Listen events and Firmware Update events
 System.on(wifi_listen+firmware_update, handle_all_the_events);
}

void setup()
{
 // listen for network events and firmware update events
 System.on(all_events, handle_all_the_events);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 114/221

These are the system events produced by the system, their numeric value (what you will

see when printing the system event to Serial) and details of how to handle the parameter

value. The version of firmware these events became available is noted in the first column

below.

Setup mode is also referred to as listening mode (blinking dark blue).

Since Event Name ID Description Parameter

setup_begin 2 signals the device has entered setup
mode

not used

setup_update 4 periodic event signaling the device is
still in setup mode.

milliseconds since setup mode was started

setup_end 8 signals setup mode was exited time in ms since setup mode was started

network_credentials 16 network credentials were changed network_credentials_added or

network_credentials_cleared

0.6.1 network_status 32 network connection status one of

network_status_powering_on ,

network_status_on ,

network_status_powering_off ,

network_status_off ,

network_status_connecting ,

network_status_connected

0.6.1 cloud_status 64 cloud connection status one of

cloud_status_connecting ,

cloud_status_connected ,

cloud_status_disconnecting ,

cloud_status_disconnected

button_status 128 button pressed or released the duration in ms the button was pressed:
0 when pressed, >0 on release.

firmware_update 256 firmware update status one of firmware_update_begin ,

firmware_update_progress ,

firmware_update_complete ,

firmware_update_failed

firmware_update_pending 512 notifies the application that a firmware
update is available. This event is sent
even when updates are disabled,
giving the application chance to re-
enable firmware updates with

System.enableUpdates()

not used

reset_pending 1024 notifies the application that the system
would like to reset. This event is sent
even when resets are disabled, giving
the application chance to re-enable
resets with

System.enableReset()

not used

reset 2048 notifies that the system will reset once
the application has completed
handling this event

not used

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 115/221

Since Event Name ID Description Parameter

button_click 4096 event sent each time SETUP/MODE
button is clicked.

int clicks =
system_button_clicks(param);
retrieves the number of clicks so far.

button_final_click 8192 sent after a run of one or more clicks
not followed by additional clicks.

Unlike the button_click event,

the button_final_click
event is sent once, at the end of a
series of clicks.

int clicks =
system_button_clicks(param);
retrieves the number of times the button
was pushed.

0.6.1 time_changed 16384 device time changed time_changed_manually or

time_changed_sync

0.6.1 low_battery 32768 generated when low battery condition
is detected.

not used

0.8.0 out_of_memory 1<<18 event generated when a request for
memory could not be satisfied

the amount in bytes of memory that could
not be allocated

System modes help you control how the device manages the connection with the cloud.

By default, the device connects to the Cloud and processes messages automatically.

However there are many cases where a user will want to take control over that connection.

There are three available system modes: AUTOMATIC , SEMI_AUTOMATIC , and MANUAL . These

modes describe how connectivity is handled. These system modes describe how

connectivity is handled and when user code is run.

System modes must be called before the setup() function. By default, the device is always

in AUTOMATIC mode.

The automatic mode of connectivity provides the default behavior of the device, which is

that:

System Modes

Automatic mode

SYSTEM_MODE(AUTOMATIC);

void setup() {
 // This won't be called until the device is connected to the cloud
}

void loop() {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 116/221

When the device starts up, it automatically tries to connect to Wi-Fi and the Particle

Device Cloud.

Once a connection with the Particle Device Cloud has been established, the user code

starts running.

Messages to and from the Cloud are handled in between runs of the user loop; the

user loop automatically alternates with Particle.process() .

Particle.process() is also called during any delay() of at least 1 second.

If the user loop blocks for more than about 20 seconds, the connection to the Cloud

will be lost. To prevent this from happening, the user can call Particle.process()

manually.

If the connection to the Cloud is ever lost, the device will automatically attempt to

reconnect. This re-connection will block from a few milliseconds up to 8 seconds.

SYSTEM_MODE(AUTOMATIC) does not need to be called, because it is the default state;

however the user can invoke this method to make the mode explicit.

In automatic mode, the user can still call Particle.disconnect() to disconnect from the

Cloud, but is then responsible for re-connecting to the Cloud by calling

Particle.connect() .

The semi-automatic mode will not attempt to connect the device to the Cloud

automatically. However once the device is connected to the Cloud (through some user

intervention), messages will be processed automatically, as in the automatic mode above.

Semi-automatic mode

 // Neither will this
}

SYSTEM_MODE(SEMI_AUTOMATIC);

void setup() {
 // This is called immediately
}

void loop() {
 if (buttonIsPressed()) {
 Particle.connect();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 117/221

The semi-automatic mode is therefore much like the automatic mode, except:

When the device boots up, setup() and loop() will begin running immediately.

Once the user calls Particle.connect() , the user code will be blocked while the

device attempts to negotiate a connection. This connection will block execution of

loop() or setup() until either the device connects to the Cloud or an interrupt is fired

that calls Particle.disconnect() .

The "manual" mode puts the device's connectivity completely in the user's control. This

means that the user is responsible for both establishing a connection to the Particle Device

Cloud and handling communications with the Cloud by calling Particle.process() on a

regular basis.

When using manual mode:

Manual mode

 } else {
 doOfflineStuff();
 }
}

SYSTEM_MODE(MANUAL);

void setup() {
 // This will run automatically
}

void loop() {
 if (buttonIsPressed()) {
 Particle.connect();
 }
 if (Particle.connected()) {
 Particle.process();
 doOtherStuff();
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 118/221

The user code will run immediately when the device is powered on.

Once the user calls Particle.connect() , the device will attempt to begin the

connection process.

Once the device is connected to the Cloud (Particle.connected() == true), the user

must call Particle.process() regularly to handle incoming messages and keep the

connection alive. The more frequently Particle.process() is called, the more

responsive the device will be to incoming messages.

If Particle.process() is called less frequently than every 20 seconds, the connection

with the Cloud will die. It may take a couple of additional calls of Particle.process()

for the device to recognize that the connection has been lost.

Since 0.4.7:

Determine the version of Device OS available. Returns a version string of the format:

MAJOR.MINOR.PATCHMAJOR.MINOR.PATCH

Such as "0.4.7".

For example

Determines the version of Device OS available. Returns the version encoded as a number:

System Calls

version()

versionNumber()

void setup()
{
 Serial.printlnf("System version: %s", System.version().c_str());
 // prints
 // System version: 0.4.7
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 119/221

0xAABBCCDD0xAABBCCDD

AA is the major release

BB is the minor release

CC is the patch number

DD is 0

Firmware 0.4.7 has a version number 0x00040700

Since 0.4.6:

Can be used to determine how long the System button (MODE on Core/Electron, SETUP

on Photon) has been pushed.

Returns uint16_t as duration button has been held down in milliseconds.

buttonPushed()

// EXAMPLE USAGE
void button_handler(system_event_t event, int duration, void*)
{
 if (!duration) { // just pressed
 RGB.control(true);
 RGB.color(255, 0, 255); // MAGENTA
 }
 else { // just released
 RGB.control(false);
 }
}

void setup()
{
 System.on(button_status, button_handler);
}

void loop()
{
 // it would be nice to fire routine events while
 // the button is being pushed, rather than rely upon loop
 if (System.buttonPushed() > 1000) {
 RGB.color(255, 255, 0); // YELLOW

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 120/221

Since 0.4.6:

The system cycle counter is incremented for each instruction executed. It functions in

normal code and during interrupts. Since it operates at the clock frequency of the device, it

can be used for accurately measuring small periods of time.

The system ticks are intended for measuring times from less than a microsecond up to a

second. For longer time periods, using micros() or millis() would be more suitable.

Returns the current value of the system tick count. One tick corresponds to one cpu cycle.

Retrieves the number of ticks per microsecond for this device. This is useful when

converting between a number of ticks and time in microseconds.

System Cycle Counter

ticks()

ticksPerMicrosecond();

 }
}

 // overview of System tick functions
 uint32_t now = System.ticks();

 // for converting an the unknown system tick frequency into microseconds
 uint32_t scale = System.ticksPerMicrosecond();

 // delay a given number of ticks.
 System.ticksDelay(10);

 // measure a precise time whens something start
 uint32_t ticks = System.ticks();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 121/221

Pause execution a given number of ticks. This can be used to implement precise delays.

The system code has been written such that the compiler can compute the number of ticks

to delay at compile time and inline the function calls, reducing overhead to a minimum.

Since 0.4.4:

Retrieves the amount of free memory in the system in bytes.

ticksDelay()

freeMemory()

 uint32_t start = System.ticks();
 startTheFrobnicator();
 uint32_t end = System.ticks();
 uint32_t duration = (end-start)/System.ticksPerMicrosecond();

 Serial.printlnf("The frobnicator took %d microseconds to start",
duration);

 // delay 10 ticks. How long this is actually depends upon the clock
speed of the
 // device.
 System.ticksDelay(10);

 // to delay for 3 microseconds on any device:
 System.ticksDelay(3*System.ticksPerMicrosecond());

uint32_t freemem = System.freeMemory();
Serial.print("free memory: ");
Serial.println(freemem);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 122/221

The device will enter DFU-mode to allow new user firmware to be refreshed. DFU mode is

cancelled by

flashing firmware to the device using dfu-util, specifying the :leave option, or

a system reset

To make DFU mode permanent - so that it continues to enter DFU mode even after a reset

until new firmware is flashed, pass true to the dfu() function.

System.deviceID() provides an easy way to extract the device ID of your device. It returns a

String object of the device ID, which is used to identify your device.

dfu()

deviceID()

System.dfu()

System.dfu(true); // persistent DFU mode - will enter DFU after a reset
until firmware is flashed.

// EXAMPLE USAGE

void setup()
{
 // Make sure your Serial Terminal app is closed before powering your
device
 Serial.begin(9600);
 // Wait for a USB serial connection for up to 30 seconds
 waitFor(Serial.isConnected, 30000);

 String myID = System.deviceID();
 // Prints out the device ID over Serial
 Serial.println(myID);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 123/221

Since 0.4.6:

Resets the device and restarts in safe mode.

Since 0.8.0:

This class allows to query the information about the latest System.sleep() .

Get the wake up reason.

enterSafeMode()

SleepResult Class

reason()

void loop() {}

// SYNTAX
System.enterSafeMode();

// SYNTAX
SleepResult result = System.sleepResult();
int reason = result.reason();

// EXAMPLE
SleepResult result = System.sleepResult();
switch (result.reason()) {
 case WAKEUP_REASON_NONE: {
 Log.info("Raspberry Pi did not wake up from sleep");
 break;
 }
 case WAKEUP_REASON_PIN: {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 124/221

Returns a code describing a reason Raspberry Pi woke up from sleep. The following

reasons are defined:

WAKEUP_REASON_NONE : Raspberry Pi did not wake up from sleep

WAKEUP_REASON_PIN : Raspberry Pi was woken up by an edge signal to a pin

WAKEUP_REASON_RTC : Raspberry Pi was woken up by the RTC (after a specified number

of seconds)

WAKEUP_REASON_PIN_OR_RTC : Raspberry Pi was woken up either by an edge signal to a

pin or by the RTC (after a specified number of seconds)

wokenUpByPin()

 Log.info("Raspberry Pi was woken up by a pin");
 break;
 }
 case WAKEUP_REASON_RTC: {
 Log.info("Raspberry Pi was woken up by the RTC (after a specified number
of seconds)");
 break;
 }
 case WAKEUP_REASON_PIN_OR_RTC: {
 Log.info("Raspberry Pi was woken up by either a pin or the RTC (after a
specified number of seconds)");
 break;
 }
}

// SYNTAX
SleepResult result = System.sleepResult();
bool r = result.wokenUpByPin();

// EXAMPLE
SleepResult result = System.sleepResult();
if (result.wokenUpByPin()) {
 Log.info("Raspberry Pi was woken up by a pin");
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 125/221

Returns true when Raspberry Pi was woken up by a pin.

Returns true when Raspberry Pi was woken up by the RTC (after a specified number of

seconds).

An alias to wokenUpByRtc() .

Returns: the number of the pin that woke the device.

wokenUpByRtc()

rtc()

pin()

// SYNTAX
SleepResult result = System.sleepResult();
bool r = result.wokenUpByRtc();

// EXAMPLE
SleepResult result = System.sleepResult();
if (result.wokenUpByRtc()) {
 Log.info("Raspberry Pi was woken up by the RTC (after a specified number
of seconds)");
}

// SYNTAX
SleepResult result = System.sleepResult();
pin_t pin = result.pin();

// EXAMPLE
SleepResult result = System.sleepResult();
pin_t pin = result.pin();
if (result.wokenUpByPin()) {
 Log.info("Raspberry Pi was woken up by the pin number %d", pin);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 126/221

Get the error code of the latest sleep.

Returns: SYSTEM_ERROR_NONE (0) when there was no error during latest sleep or a non-zero

error code.

Since 0.8.0:

Retrieves the information about the latest sleep.

Returns: an instance of SleepResult class.

Since 0.8.0:

See SleepResult documentation.

error()

sleepResult()

wakeUpReason()

wokenUpByPin()

// SYNTAX
SleepResult result = System.sleepResult();
int err = result.error();

// SYNTAX
SleepResult result = System.sleepResult();

// SYNTAX
int reason = System.wakeUpReason();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 127/221

Since 0.8.0:

See SleepResult documentation.

Since 0.8.0

See SleepResult documentation.

Since 0.8.0:

See SleepResult documentation.

Since 0.8.0:

wokenUpByRtc()

wakeUpPin()

sleepError()

// SYNTAX
bool result = System.wokenUpByPin();

// SYNTAX
bool result = System.wokenUpByRtc();

// SYNTAX
pin_t pin = System.wakeUpPin();

// SYNTAX
int err = System.sleepError();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 128/221

See SleepResult documentation.

Resets the device, just like hitting the reset button or powering down and back up.

This method allows to disable automatic resetting of the device on such events as

successful firmware update.

reset()

disableReset()

uint32_t lastReset = 0;

void setup() {
 lastReset = millis();
}

void loop() {
 // Reset after 5 minutes of operation
 // ==================================
 if (millis() - lastReset > 5*60000UL) {
 System.reset();
 }
}

// EXAMPLE
void on_reset_pending() {
 // Enable resetting of the device. The system will reset after this
method is called
 System.enableReset();
}

void setup() {
 // Register the event handler
 System.on(reset_pending, on_reset_pending);
 // Disable resetting of the device
 System.disableReset();

}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 129/221

When the system needs to reset the device it first sends the reset_pending event to the

application, and, if automatic resetting is disabled, waits until the application has called

enableReset() to finally perform the reset. This allows the application to perform any

necessary cleanup before resetting the device.

Allows the system to reset the device when necessary.

Returns true if the system needs to reset the device.

Since 0.6.0:

The system can track the hardware and software resets of the device.

You can also pass in your own data as part of an application-initiated reset:

enableReset()

resetPending()

Reset Reason

void loop() {
}

// EXAMPLE
// Restart in safe mode if the device previously reset due to a PANIC (SOS
code)
STARTUP(System.enableFeature(FEATURE_RESET_INFO));

void setup() {
 if (System.resetReason() == RESET_REASON_PANIC) {
 System.enterSafeMode();
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 130/221

Note: This functionality requires FEATURE_RESET_INFO flag to be enabled in order to work.

resetReason()

Returns a code describing reason of the last device reset. The following codes are defined:

RESET_REASON_PIN_RESET : Reset button or reset pin

RESET_REASON_POWER_MANAGEMENT : Low-power management reset

RESET_REASON_POWER_DOWN : Power-down reset

RESET_REASON_POWER_BROWNOUT : Brownout reset

RESET_REASON_WATCHDOG : Hardware watchdog reset

RESET_REASON_UPDATE : Successful firmware update

RESET_REASON_UPDATE_TIMEOUT : Firmware update timeout

RESET_REASON_FACTORY_RESET : Factory reset requested

RESET_REASON_SAFE_MODE : Safe mode requested

RESET_REASON_DFU_MODE : DFU mode requested

RESET_REASON_PANIC : System panic

RESET_REASON_USER : User-requested reset

RESET_REASON_UNKNOWN : Unspecified reset reason

RESET_REASON_NONE : Information is not available

// EXAMPLE
STARTUP(System.enableFeature(FEATURE_RESET_INFO));

void setup() {
 // Reset the device 3 times in a row
 if (System.resetReason() == RESET_REASON_USER) {
 uint32_t data = System.resetReasonData();
 if (data < 3) {
 System.reset(data + 1);
 }
 } else {
 // This will set the reset reason to RESET_REASON_USER
 System.reset(1);
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 131/221

resetReasonData()

Returns a user-defined value that has been previously specified for the System.reset()

call.

reset(uint32_t data)

This overloaded method accepts an arbitrary 32-bit value, stores it to the backup register

and resets the device. The value can be retrieved via resetReasonData() method after the

device has restarted.

System configuration can be modified with the System.set() call.

The following configuration values can be changed:

SYSTEM_CONFIG_DEVICE_KEY : the device private key. Max length of

DCT_DEVICE_PRIVATE_KEY_SIZE (1216).

SYSTEM_CONFIG_SERVER_KEY : the server public key. Max length of

SYSTEM_CONFIG_SERVER_KEY (768).

The system allows to alter certain aspects of its default behavior via the system flags. The

following system flags are defined:

SYSTEM_FLAG_PUBLISH_RESET_INFO : enables publishing of the last reset reason to the

cloud (enabled by default)

SYSTEM_FLAG_RESET_NETWORK_ON_CLOUD_ERRORS : enables resetting of the network

connection on cloud connection errors (enabled by default)

System Config [set]

System Flags [disable]

// SYNTAX
System.set(SYSTEM_CONFIG_..., "value");
System.set(SYSTEM_CONFIG_..., buffer, length);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 132/221

System.enable(system_flag_t flag)

Enables the system flag.

System.disable(system_flag_t flag)

Disables the system flag.

System.enabled(system_flag_t flag)

Returns true if the system flag is enabled.

Since 0.8.0

Returns the number of milliseconds passed since the device was last reset. This function is

similar to the global millis() function but returns a 64-bit value.

Returns the number of seconds passed since the device was last reset.

You can call scripts and run other programs from the firmware. In Linux, a running program

is called a process.

System Uptime

System.millis()

System.uptime()

Process Control

// EXAMPLE
// Do not publish last reset reason
System.disable(SYSTEM_FLAG_PUBLISH_RESET_INFO);

// Do not reset network connection on cloud errors
System.disable(SYSTEM_FLAG_RESET_NETWORK_ON_CLOUD_ERRORS);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 133/221

This interface is in beta. It might change in non-backwards compatible ways.

Start running another program in the background. It returns a Process object so you can

interact with the program while it running and after it has exited.

The command argument should start with the name of a program or script (with or without

path) and can contain other arguments separated by spaces.

The command is executed through the shell: /bin/sh -c <command>

It's important to call wait() to block the firmware until the program finishes running or call

exited() until it returns true. Otherwise when the program completes the operating

system will keep information about the process in memory forever, eventually making it

impossible to start any new process on the entire device.

Block the firmware until the program finishes. Returns immediately if the process has

already finished.

Returns the exit code of the process.

run()

wait()

// SYNTAX
Process proc = Process::run(command)

// EXAMPLE USAGE
// Simple script and block it is finished
Process proc = Process::run("/home/pi/script.sh");
proc.wait();

// Take a picture with a Pi camera
Process proc = Process::run("raspistill -o /home/pi/photo.jpg");
proc.wait();

// SYNTAX
process.wait();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 134/221

Returns true if the process has exited, false otherwise.

A "blank" Process that was never started returns true for exited() .

Stop the process by sending a signal. Defaults to the SIGTERM signal which asks the

program to quit. To force-quit an unresponsive process, use SIGKILL .

exited()

kill()

// EXAMPLE USAGE
// Run a Javascript program
Process proc = Process::run("node /home/pi/update.js");
proc.wait();

// SYNTAX
bool done = process.exited();

// EXAMPLE USAGE
// Blink an LED during a long operation
Process proc = Process::run("updatedb");
pinMode(D7, OUTPUT);
while (!proc.exited()) {
 digitalWrite(D7, HIGH);
 delay(100);
 digitalWrite(D7, LOW);
 delay(100);
}

// Restart a server when it crashes
Process proc;

void loop() {
 if (proc.exited()) {
 proc = Process::run("node /home/pi/server.js");
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 135/221

signal is either a signal number or name. Here are the most useful signals.

Signal Name Signal Number Description

SIGINT 2 Interrupt from keyboard (Ctrl-C)

SIGABRT 6 Abort. Usually from uncaught C++ exception

SIGKILL 9 Force quit

SIGSEGV 11 Bad memory operation (null pointer, bad pointer)

SIGTERM 15 Graceful quit

It's important to still call wait() or exited() after kill() to ensure the process

information is recycled by the operating system.

If the process has exited, returns the integer exit code.

exitCode()

// SYNTAX
process.kill();
process.kill(signal);

// EXAMPLE USAGE
// Stop a long operation early
Process proc = Process::run("sleep 10");
proc.kill();
proc.wait();

// SYNTAX
uint8_t code = proccess.exitCode();

// EXAMPLE USAGE
// Did the program finish sucessfully?
Process proc = Process::run("/home/pi/script.sh");
proc.wait();
if (proc.exitCode() == 0) {
 Serial.println("Success!");
}

// Did the program crash?
Process proc = Process::run("my_program");

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 136/221

An exit code of 0 means success. The meaning of non-zero error codes are specific to each

program.

If a process exits because of a signal, for example it crashed with a bad pointer, the exit

code will be 128 plus the signal value. See the table above for the signal values.

The output generated by a program is available through the out() and err() Stream for

standard output and standard error.

All the Stream functions are available like readStringUntil('\n') to read a line or

parseInt() to turn the output into an integer.

out()

err()

proc.wait();
uint8_t code = proc.exitCode();
if (code >= 128) {
 Serial.printlnf("my_program crashed with signal %d", code - 128);
}

// SYNTAX
process.out();
process.err();

// EXAMPLE USAGE
// Get entire output of program
Process proc = Process::run("ls /home/pi");
proc.wait();
String filenames = proc.out().readString();

// Get CPU temperature
Process proc = Process::run("vcgencmd measure_temp");
proc.wait();
// The output is temp=43.5'C, so read past the = and parse the number
proc.out().find("=");
float cpuTemp = proc.out().parseFloat();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 137/221

To provide input to the program, print to in() .

The same functions used to print to Serial like println and printf are available.

Note: It is very important to close in() so the process knows that no further input is

coming. If you don't do this, the process will hang forever waiting for more input.

Linux process control is a deep topic on its own. If the methods in Process don't work for

what you're trying to accomplish, you can also use any Linux process control functions like

system , fork and execve method directly in your firmware. See the note about the

standard library on the Raspberry Pi.

in()

Advanced Process Control

OTA Updates

// SYNTAX
process.in();

// EXAMPLE USAGE
// Run a calculation using the bc, a calculator program
Process proc = Process::run("bc");
proc.in().println("6 * 7");
proc.in().close(); // <-- THIS IS IMPORTANT
proc.wait();
int result = proc.out().parseInt(); // 42

// Run a command using the Linux system() function instead of Process
// The output won't be available
system("my_command");

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 138/221

This section describes the Device OS APIs that control firmware updates for Particle

devices.

Many of the behaviors described below require Device OS version 1.2.0 or higher.

This feature allows the application developer to control when the device is available for

firmware updates. This affects both over-the-air (OTA) and over-the-wire (OTW) updates.

OTA availability also affects both single device OTA updates (flashing a single device) and

fleet-wide OTA updates (deploying a firmware update to many devices in a Product).

Firmware updates are enabled by default when the device starts up after a deep sleep or

system reset. Applications may choose to disable firmware updates during critical periods

by calling the System.disableUpdates() function and then enabling them again with

System.enableUpdates() .

When the firmware update is the result of an Intelligent Firmware Release, the update is

delivered immediately after System.enableUpdates() is called.

Standard Firmware Releases are delivered the next time the device connects to the cloud

or when the current session expires or is revoked.

Note: Calling System.disableUpdates() and System.enableUpdates() for devices running

Device OS version 1.2.0 or later will result in a message sent to the Device Cloud. This will

result in a small amount of additional data usage each time they are called.

Controlling OTA Availability

System.disableUpdates()

// System.disableUpdates() example where updates are disabled
// when the device is busy.

int unlockScooter(String arg) {
 // scooter is busy, so disable updates
 System.disableUpdates();
 // ... do the unlock step
 // ...
 return 0;
}

int parkScooter(String arg) {

https://docs.particle.io/tutorials/device-cloud/ota-updates/#intelligent-firmware-releases

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 139/221

Disables OTA updates on this device. An attempt to begin an OTA update from the cloud

will be prevented by the device. When updates are disabled, firmware updates are not

delivered to the device unless forced.

Since 1.2.0

Device OS version 1.2.0 introduced enhanced support of System.disableUpdates() and

System.enableUpdates() . When running Device OS version 1.2.0 or higher, the device will

notify the Device Cloud of its OTA availability, which is visible in the Console as well as

queryable via the REST API. The cloud will use this information to deliver Intelligent

Firmware Releases.

In addition, a cloud-side system event will be emitted when updates are disabled,

particle/device/updates/enabled with a data value of false . This event is sent only if

updates were not already disabled.

Version Self service customers Standard Product Enterprise Product

Device OS < 1.2.0 Limited Support Limited Support Limited Support

Device OS >= 1.2.0 Full support Full Support Full Support

Enterprise Feature

When updates are disabled, an attempt to send a firmware update to a device that has

called System.disableUpdates() will result in the System.updatesPending() function

returning true .

System.enableUpdates()

 // scooter is no longer busy, so enable updates
 System.enableUpdates();
 // ... do the park step
 // ...
 return 0;
}

void setup() {
 Particle.function("unlockScooter", unlockScooter);
 Particle.function("parkScooter", parkScooter);
}

https://docs.particle.io/tutorials/device-cloud/ota-updates/#force-enable-ota-updates
https://docs.particle.io/tutorials/device-cloud/ota-updates/#ota-availability-in-the-console
https://docs.particle.io/reference/device-cloud/api/#get-device-information
https://docs.particle.io/tutorials/device-cloud/ota-updates/#intelligent-firmware-releases

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 140/221

Enables firmware updates on this device. Updates are enabled by default when the device

starts.

Calling this function marks the device as available for updates. When updates are enabled,

updates triggered from the Device Cloud are delivered to the device.

In addition, a cloud-side system event will be emitted when updates are enabled,

particle/device/updates/enabled with a data value of true . This event is sent only if

updates were not already enabled.

// System.enableUpdates() example where updates are disabled on startup

SYSTEM_MODE(SEMI_AUTOMATIC);

void setup() {
 System.disableUpdates(); // updates are disabled most of the time

 Particle.connect(); // now connect to the cloud
}

bool isSafeToUpdate() {
 // determine if the device is in a good state to receive updates.
 // In a real application, this function would inspect the device state
 // to determine if it is busy or not.
 return true;
}

void loop() {
 if (isSafeToUpdate()) {
 // Calling System.enableUpdates() when updates are already enabled
 // is safe, and doesn't use any data.
 System.enableUpdates();
 }
 else {
 // Calling System.disableUpdates() when updates are already disabled
 // is safe, and doesn't use any data.
 System.disableUpdates();
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 141/221

Since 1.2.0

Device OS version 1.2.0 introduced enhanced support of System.disableUpdates() and

System.enableUpdates() . If running 1.2.0 or higher, the device will notify the Device Cloud

of its OTA update availability, which is visible in the Console as well as queryable via the

REST API. The cloud will use this information to deliver Intelligent Firmware Releases.

Version Self service customers Standard Product Enterprise Product

Device OS < 1.2.0 Limited Support Limited Support Limited Support

Device OS >= 1.2.0 Full support Full Support Full Support

Determine if firmware updates are presently enabled or disabled for this device.

Returns true on startup, and after System.enableUpdates() has been called. Returns false

after System.disableUpdates() has been called.

Version Self service customers Standard Product Enterprise Product

Device OS < 1.2.0 Supported Supported Supported

Device OS >= 1.2.0 Supported Supported Supported

System.updatesEnabled()

System.updatesPending()

// System.updatesEnabled() example
bool isSafeToUpdate() {
 return true;
}

void loop() {
 if (!isSafeToUpdate() && System.updatesEnabled()) {
 Particle.publish("error", "Updates are enabled but the device is not
safe to update.");
 }
}

// System.updatesPending() example

SYSETM_MODE(SEMI_AUTOMATIC);

https://docs.particle.io/tutorials/device-cloud/ota-updates/#ota-availability-in-the-console
https://docs.particle.io/reference/device-cloud/api/#get-device-information
https://docs.particle.io/tutorials/device-cloud/ota-updates/#intelligent-firmware-releases

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 142/221

Enterprise Feature, Since 1.2.0

System.updatesPending() indicates if there is a firmware update pending that was not

delivered to the device while updates were disabled. When an update is pending, the

void setup() {
 // When disabling updates by default, you must use either system
 // thread enabled or system mode SEMI_AUTOMATIC or MANUAL
 System.disableUpdates();

 // After setting the disable updates flag, it's safe to connect to
 // the cloud.
 Particle.connect();
}

bool isSafeToUpdate() {
 // ...
 return true;
}

void loop() {
 // NB: System.updatesPending() should only be used in a Product on the
Enterprise Plan
 if (isSafeToUpdate() && System.updatesPending()) {
 System.enableUpdates();

 // Wait 2 minutes for the update to complete and the device
 // to restart. If the device doesn't automatically reset, manually
 // reset just in case.
 unsigned long start = millis();
 while (millis() - start < (120 * 1000)) {
 Particle.process();
 }
 // You normally won't reach this point as the device will
 // restart automatically to apply the update.
 System.reset();
 }
 else {
 // ... do some critical activity that shouldn't be interrupted
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 143/221

firmware_update_pending system event is emitted and the System.updatesPending()

function returns true .

When new product firmware is released with the intelligent option enabled, the

firmware is delivered immediately after release for devices that have firmware updates are

enabled.

For devices with updates disabled, firmware updates are deferred by the device. The

device is notified of the pending update at the time of deferral. The system event

firmware_update_pending is emmitted and the System.updatesPending() function returns

true . The update is delivered when the application later re-enables updates by calling

System.enableUpdates() , or when updates are force enabled from the cloud, or when the

device is restarted.

In addition, a cloud-side system event will be emitted when a pending OTA update is

queued, particle/device/updates/pending with a data value of true .

Version Self service customers Standard Product Enterprise Product

Device OS < 1.2.0 N/A N/A N/A

Device OS >= 1.2.0 N/A N/A Supported

Since 1.2.0

When the device is not available for updates, the pending firmware update is not normally

delivered to the device. Updates can be forced in the cloud either via the Console or the

REST API to override the local setting on the device. This means that firmware updates are

delivered even when System.disableUpdates() has been called by the device application.

System.updatesForced()

// System.updatesForced() example
void loop() {
 if (System.updatesForced()) {
 // don't perform critical functions while updates are forced
 }
 else {
 // perform critical functions
 }
}

https://docs.particle.io/tutorials/device-cloud/ota-updates/#force-enable-ota-updates

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 144/221

When updates are forced in the cloud, the System.updatesForced() function returns true .

In addition, a cloud-side system event will be emitted when OTA updates are force

enabled from the cloud, particle/device/updates/forced with a data value of true .

Updates may be forced for a particular device. When this happens, updates are delivered

even when System.disableUpdates() has been called.

When updates are forced in the cloud, this function returns true .

Forced updates may be used with Product firmware releases or single device OTA updates.

Version Self service customers Standard Product Enterprise Product

Device OS < 1.2.0 N/A N/A N/A

Device OS >= 1.2.0 Supported Supported Supported

User firmware is designed to run transparently regardless of what type of device it is run

on. However, sometimes you will need to have code that varies depending on the

capabilities of the device.

It's always best to check for a capability, rather than a specific device. For example,

checking for cellular instead of checking for the Electron allows the code to work properly

on the Boron without modification.

Some commonly used features include:

Wiring_Cellular

Wiring_Ethernet

Wiring_IPv6

Wiring_Keyboard

Wiring_Mesh

Wiring_Mouse

Wiring_Serial2

Wiring_Serial3

Wiring_Serial4

Wiring_Serial5

Checking for Features

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 145/221

Wiring_SPI1

Wiring_SPI2

Wiring_USBSerial1

Wiring_WiFi

Wiring_Wire1

Wiring_Wire3

Wiring_WpaEnterprise

For example, you might have code like this to declare two different methods, depending

on your network type:

The official list can be found in the source.

The define value SYSTEM_VERSION specifies the system version.

For example, if you had code that you only wanted to include in 0.7.0 and later, you'd

check for:

It's always best to check for features, but it is possible to check for a specific platform:

Checking Device OS Version

Checking Platform ID

#if Wiring_WiFi
 const char *wifiScan();
#endif

#if Wiring_Cellular
 const char *cellularScan();
#endif

#if SYSTEM_VERSION >= SYSTEM_VERSION_v070
// Code to include only for 0.7.0 and later
#endif

https://github.com/particle-iot/device-os/blob/develop/wiring/inc/spark_wiring_platform.h#L47
https://github.com/particle-iot/device-os/blob/develop/system/inc/system_version.h

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 146/221

You can find a complete list of platforms in the source.

All versions of Particle firmware to date have supported parts of the Arduino API, such as

digitalRead , Serial and String .

From 0.6.2 onwards, the firmware API will continue to provide increasing levels of support

for new Arduino APIs to make porting applications and libraries as straightforward as

possible.

However, to prevent breaking existing applications and libraries, these new Arduino APIs

have to be specifically enabled in order to be available for use in your application or

library.

Arduino APIs that need to be enabled explicitly are marked with "requires Arduino.h" in

this reference documentation.

The extended Arduino APIs that are added from 0.6.2 onwards are not immediately

available but have to be enabled by declaring Arduino support in your app or library.

This is done by adding #include "Arduino.h" to each source file that requires an extended

Arduino API.

Once Arduino.h has been added to a source file, additional Arduino APIs are made

available. The APIs added are determined by the targeted firmware version. In addition to

defining the new APIs, the ARDUINO symbol is set to a value that describes the supported

SDK version. (e.g. 10800 for 1.8.0)

Arduino Compatibility

Enabling Extended Arduino SDK Compatibility

Arduino APIs added by Firmware Version

#if PLATFORM_ID == PLATFORM_BORON
// Boron-specific code goes here
#endif

https://github.com/particle-iot/device-os/blob/develop/hal/shared/platforms.h
https://www.arduino.cc/en/Reference/HomePage

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 147/221

The table below lists the Arduino APIs added for each firmware version and the value of

the ARDUINO symbol.

API name description
ARDUINO
version

Particle
version

SPISettings 10800 0.6.2

__FastStringHelper 10800 0.6.2

Wire.setClock synonym for Wire.setSpeed 10800 0.6.2

SPI.usingInterrupt NB: this function is included to allow libraries to compile, but is implemented
as a empty function.

10800 0.6.2

LED_BUILTIN defines the pin that corresponds to the built-in LED 10800 0.6.2

The Arduino SDK has a release cycle that is independent from Particle firmware. When a

new Arduino SDK is released, the new APIs introduced will not be available in the Particle

firmware until the next Particle firmware release at the earliest.

However, this does not have to stop applications and library authors from using these new

Arduino APIs. In some cases, it's possible to duplicate the sources in your application or

library. However, it is necessary to be sure these APIs defined in your code are only

conditionally included, based on the version of the Arduino SDK provided by Particle

firmware used to compile the library or application.

For example, let's say that in Arduino SDK 1.9.5, a new function was added,

engageHyperdrive() . You read the description and determine this is perfect for your

application or library and that you want to use it.

In your application sources, or library headers you would add the definition like this:

Adding Arduino Symbols to Applications and Libraries

// Example of adding an Arduino SDK API in a later Arduino SDK than
presently supported
#include "Arduino.h" // this declares that our app/library wants the
extended Arduino support

#if ARDUINO < 10905 // the API is added in SDK version 1.9.5 so we don't
re-define it when the SDK already has it
// now to define the new API
bool engageHyperdrive() {
 return false; // womp womp
}
#endif

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 148/221

In your source code, you use the function normally. When compiling against a version of

firmware that supports an older Arduino SDK, then your own version of the API will be

used. Later, when engageHyperdrive() is added to Particle firmware, our version will be

used. This happens when the ARDUINO version is the same or greater than the the

corresponding version of the Arduino SDK, which indicates the API is provided by Particle

firmware.

By using this technique, you can use new APIs and functions right away, while also allowing

them to be later defined in the Arduino support provided by Particle, and crucially, without

clashes.

Note: for this to work, the version check has to be correct and must use the value that the

Arduino SDK sets the ARDUINO symbol to when the new Arduino API is first introduced in

the Arduino SDK.

The String class allows you to use and manipulate strings of text in more complex ways

than character arrays do. You can concatenate Strings, append to them, search for and

replace substrings, and more. It takes more memory than a simple character array, but it is

also more useful.

For reference, character arrays are referred to as strings with a small s, and instances of the

String class are referred to as Strings with a capital S. Note that constant strings, specified

in "double quotes" are treated as char arrays, not instances of the String class.

Constructs an instance of the String class. There are multiple versions that construct Strings

from different data types (i.e. format them as sequences of characters), including:

a constant string of characters, in double quotes (i.e. a char array)

a single constant character, in single quotes

another instance of the String object

a constant integer or long integer

a constant integer or long integer, using a specified base

String Class

String()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 149/221

an integer or long integer variable

an integer or long integer variable, using a specified base

a float variable, showing a specific number of decimal places

Constructing a String from a number results in a string that contains the ASCII

representation of that number. The default is base ten, so

String thisString = String(13) gives you the String "13". You can use other bases,

however. For example, String thisString = String(13, HEX) gives you the String "D",

which is the hexadecimal representation of the decimal value 13. Or if you prefer binary,

// SYNTAX
String(val)
String(val, base)

// EXAMPLES

String stringOne = "Hello String"; // using a constant
String
String stringOne = String('a'); // converting a
constant char into a String
String stringTwo = String("This is a string"); // converting a
constant string into a String object
String stringOne = String(stringTwo + " with more"); // concatenating two
strings
String stringOne = String(13); // using a constant
integer
String stringOne = String(analogRead(0), DEC); // using an int and a
base
String stringOne = String(45, HEX); // using an int and a
base (hexadecimal)
String stringOne = String(255, BIN); // using an int and a
base (binary)
String stringOne = String(millis(), DEC); // using a long and a
base
String stringOne = String(34.5432, 2); // using a float
showing only 2 decimal places shows 34.54

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 150/221

String thisString = String(13, BIN) gives you the String "1101", which is the binary

representation of 13.

Parameters:

val: a variable to format as a String - string, char, byte, int, long, unsigned int,

unsigned long

base (optional) - the base in which to format an integral value

Returns: an instance of the String class

Access a particular character of the String.

Parameters:

string : a variable of type String

n : the character to access

Returns: the n'th character of the String

Compares two Strings, testing whether one comes before or after the other, or whether

they're equal. The strings are compared character by character, using the ASCII values of

the characters. That means, for example, that 'a' comes before 'b' but after 'A'. Numbers

come before letters.

Parameters:

charAt()

compareTo()

// SYNTAX
string.charAt(n)

// SYNTAX
string.compareTo(string2)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 151/221

string: a variable of type String

string2: another variable of type String

Returns:

a negative number: if string comes before string2

0: if string equals string2

a positive number: if string comes after string2

Combines, or concatenates two strings into one string. The second string is appended to

the first, and the result is placed in the original string.

Parameters:

string, string2: variables of type String

Returns: None

Tests whether or not a String ends with the characters of another String.

Parameters:

string: a variable of type String

string2: another variable of type String

concat()

endsWith()

// SYNTAX
string.concat(string2)

// SYNTAX
string.endsWith(string2)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 152/221

Returns:

true: if string ends with the characters of string2

false: otherwise

Compares two strings for equality. The comparison is case-sensitive, meaning the String

"hello" is not equal to the String "HELLO".

Parameters:

string, string2: variables of type String

Returns:

true: if string equals string2

false: otherwise

Compares two strings for equality. The comparison is not case-sensitive, meaning the

String("hello") is equal to the String("HELLO").

Parameters:

string, string2: variables of type String

Returns:

equals()

equalsIgnoreCase()

// SYNTAX
string.equals(string2)

// SYNTAX
string.equalsIgnoreCase(string2)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 153/221

true: if string equals string2 (ignoring case)

false: otherwise

Since 0.4.6:

Provides printf-style formatting for strings.

Copies the string's characters to the supplied buffer.

Parameters:

string: a variable of type String

buf: the buffer to copy the characters into (byte [])

len: the size of the buffer (unsigned int)

Returns: None

Gets a pointer (const char *) to the internal c-string representation of the string. You can

use this to pass to a function that require a c-string. This string cannot be modified.

The object also supports operator const char * so for things that specifically take a c-

string (like Particle.publish) the conversion is automatic.

format()

getBytes()

c_str()

Particle.publish("startup", String::format("frobnicator started at %s",
Time.timeStr().c_str()));

// SYNTAX
string.getBytes(buf, len)

http://www.cplusplus.com/reference/cstdio/printf/

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 154/221

You would normally use c_str() if you need to pass the string to something like

Serial.printlnf or Log.info where the conversion is ambiguous:

This is also helpful if you want to print out an IP address:

Locates a character or String within another String. By default, searches from the beginning

of the String, but can also start from a given index, allowing for the locating of all instances

of the character or String.

Parameters:

string: a variable of type String

val: the value to search for - char or String

from: the index to start the search from

Returns: The index of val within the String, or -1 if not found.

Locates a character or String within another String. By default, searches from the end of the

String, but can also work backwards from a given index, allowing for the locating of all

instances of the character or String.

indexOf()

lastIndexOf()

Serial.printlnf("the string is: %s", string.c_str());

Serial.printlnf("ip addr: %s", WiFi.localIP().toString().c_str());

// SYNTAX
string.indexOf(val)
string.indexOf(val, from)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 155/221

Parameters:

string: a variable of type String

val: the value to search for - char or String

from: the index to work backwards from

Returns: The index of val within the String, or -1 if not found.

Returns the length of the String, in characters. (Note that this doesn't include a trailing null

character.)

Parameters:

string: a variable of type String

Returns: The length of the String in characters.

The String remove() function modifies a string, in place, removing chars from the provided

index to the end of the string or from the provided index to index plus count.

length()

remove()

// SYNTAX
string.lastIndexOf(val)
string.lastIndexOf(val, from)

// SYNTAX
string.length()

// SYNTAX
string.remove(index)
string.remove(index,count)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 156/221

Parameters:

string: the string which will be modified - a variable of type String

index: a variable of type unsigned int

count: a variable of type unsigned int

Returns: None

The String replace() function allows you to replace all instances of a given character with

another character. You can also use replace to replace substrings of a string with a different

substring.

Parameters:

string: the string which will be modified - a variable of type String

substring1: searched for - another variable of type String (single or multi-character),

char or const char (single character only)

substring2: replaced with - another variable of type String (single or multi-character),

char or const char (single character only)

Returns: None

The String reserve() function allows you to allocate a buffer in memory for manipulating

strings.

replace()

reserve()

// SYNTAX
string.replace(substring1, substring2)

// SYNTAX
string.reserve(size)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 157/221

Parameters:

size: unsigned int declaring the number of bytes in memory to save for string

manipulation

Returns: None

Sets a character of the String. Has no effect on indices outside the existing length of the

String.

setCharAt()

//EXAMPLE

String myString;

void setup() {
 // initialize serial and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for Leonardo only
 }

 myString.reserve(26);
 myString = "i=";
 myString += "1234";
 myString += ", is that ok?";

 // print the String:
 Serial.println(myString);
}

void loop() {
 // nothing to do here
}

// SYNTAX
string.setCharAt(index, c)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 158/221

Parameters:

string: a variable of type String

index: the index to set the character at

c: the character to store to the given location

Returns: None

Tests whether or not a String starts with the characters of another String.

Parameters:

string, string2: variable2 of type String

Returns:

true: if string starts with the characters of string2

false: otherwise

Get a substring of a String. The starting index is inclusive (the corresponding character is

included in the substring), but the optional ending index is exclusive (the corresponding

character is not included in the substring). If the ending index is omitted, the substring

continues to the end of the String.

startsWith()

substring()

// SYNTAX
string.startsWith(string2)

// SYNTAX
string.substring(from)
string.substring(from, to)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 159/221

Parameters:

string: a variable of type String

from: the index to start the substring at

to (optional): the index to end the substring before

Returns: the substring

Copies the string's characters to the supplied buffer.

Parameters:

string: a variable of type String

buf: the buffer to copy the characters into (char [])

len: the size of the buffer (unsigned int)

Returns: None

Converts a valid String to a float. The input string should start with a digit. If the string

contains non-digit characters, the function will stop performing the conversion. For

example, the strings "123.45", "123", and "123fish" are converted to 123.45, 123.00, and

123.00 respectively. Note that "123.456" is approximated with 123.46. Note too that floats

have only 6-7 decimal digits of precision and that longer strings might be truncated.

toCharArray()

toFloat()

// SYNTAX
string.toCharArray(buf, len)

// SYNTAX
string.toFloat()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 160/221

Parameters:

string: a variable of type String

Returns: float (If no valid conversion could be performed because the string doesn't start

with a digit, a zero is returned.)

Converts a valid String to an integer. The input string should start with an integral number.

If the string contains non-integral numbers, the function will stop performing the

conversion.

Parameters:

string: a variable of type String

Returns: long (If no valid conversion could be performed because the string doesn't start

with a integral number, a zero is returned.)

Get a lower-case version of a String. toLowerCase() modifies the string in place.

Parameters:

string: a variable of type String

Returns: None

toInt()

toLowerCase()

// SYNTAX
string.toInt()

// SYNTAX
string.toLowerCase()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 161/221

Get an upper-case version of a String. toUpperCase() modifies the string in place.

Parameters:

string: a variable of type String

Returns: None

Get a version of the String with any leading and trailing whitespace removed.

Parameters:

string: a variable of type String

Returns: None

Stream is the base class for character and binary based streams. It is not called directly, but

invoked whenever you use a function that relies on it. The Particle Stream Class is based on

the Arduino Stream Class.

Stream defines the reading functions in Particle. When using any core functionality that

uses a read() or similar method, you can safely assume it calls on the Stream class. For

toUpperCase()

trim()

Stream Class

// SYNTAX
string.toUpperCase()

// SYNTAX
string.trim()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 162/221

functions like print(), Stream inherits from the Print class.

Some of the Particle classes that rely on Stream include : Serial Wire TCPClient UDP

setTimeout() sets the maximum milliseconds to wait for stream data, it defaults to 1000

milliseconds.

Parameters:

stream: an instance of a class that inherits from Stream

time: timeout duration in milliseconds (unsigned int)

Returns: None

find() reads data from the stream until the target string of given length is found.

Parameters:

stream : an instance of a class that inherits from Stream

target : pointer to the string to search for (char *)

length : length of target string to search for (size_t)

Returns: returns true if target string is found, false if timed out

setTimeout()

find()

// SYNTAX
stream.setTimeout(time);

// SYNTAX
stream.find(target); // reads data from the stream until the target
string is found
stream.find(target, length); // reads data from the stream until the
target string of given length is found

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 163/221

findUntil() reads data from the stream until the target string or terminator string is found.

Parameters:

stream : an instance of a class that inherits from Stream

target : pointer to the string to search (char *)

terminal : pointer to the terminal string to search for (char *)

length : length of target string to search for (size_t)

Returns: returns true if target string or terminator string is found, false if timed out

readBytes() read characters from a stream into a buffer. The function terminates if the

determined length has been read, or it times out.

Parameters:

stream : an instance of a class that inherits from Stream

buffer : pointer to the buffer to store the bytes in (char *)

length : the number of bytes to read (size_t)

findUntil()

readBytes()

// SYNTAX
stream.findUntil(target, terminal); // reads data from the stream
until the target string or terminator is found
stream.findUntil(target, terminal, length); // reads data from the stream
until the target string of given length or terminator is found

// SYNTAX
stream.readBytes(buffer, length);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 164/221

Returns: returns the number of characters placed in the buffer (0 means no valid data

found)

readBytesUntil() reads characters from a stream into a buffer. The function terminates if

the terminator character is detected, the determined length has been read, or it times out.

Parameters:

stream : an instance of a class that inherits from Stream

terminator : the character to search for (char)

buffer : pointer to the buffer to store the bytes in (char *)

length : the number of bytes to read (size_t)

Returns: returns the number of characters placed in the buffer (0 means no valid data

found)

readString() reads characters from a stream into a string. The function terminates if it

times out.

Parameters:

stream : an instance of a class that inherits from Stream

Returns: the entire string read from stream (String)

readBytesUntil()

readString()

// SYNTAX
stream.readBytesUntil(terminator, buffer, length);

// SYNTAX
stream.readString();

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 165/221

readStringUntil() reads characters from a stream into a string until a terminator character

is detected. The function terminates if it times out.

Parameters:

stream : an instance of a class that inherits from Stream

terminator : the character to search for (char)

Returns: the entire string read from stream, until the terminator character is detected

parseInt() returns the first valid (long) integer value from the current position under the

following conditions:

Initial characters that are not digits or a minus sign, are skipped;

Parsing stops when no characters have been read for a configurable time-out value, or

a non-digit is read;

Parameters:

stream : an instance of a class that inherits from Stream

skipChar : the character to ignore while parsing (char).

readStringUntil()

parseInt()

// SYNTAX
stream.readStringUntil(terminator);

// SYNTAX
stream.parseInt();
stream.parseInt(skipChar); // allows format characters (typically commas)
in values to be ignored

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 166/221

Returns: parsed int value (long). If no valid digits were read when the time-out occurs, 0 is

returned.

parseFloat() as parseInt() but returns the first valid floating point value from the current

position.

Parameters:

stream : an instance of a class that inherits from Stream

skipChar : the character to ignore while parsing (char).

Returns: parsed float value (float). If no valid digits were read when the time-out occurs, 0 is

returned.

Since 0.6.0:

This library provides various classes for logging.

parseFloat()

Logging

// SYNTAX
stream.parsetFloat();
stream.parsetFloat(skipChar); // allows format characters (typically
commas) in values to be ignored

// EXAMPLE

// Use primary serial over USB interface for logging output
SerialLogHandler logHandler;

void setup() {
 // Log some messages with different logging levels
 Log.info("This is info message");
 Log.warn("This is warning message");
 Log.error("This is error message");

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 167/221

At higher level, the logging framework consists of two parts represented by their

respective classes: loggers and log handlers. Most of the logging operations, such as

generating a log message, are done through logger instances, while log handlers act as

sinks for the overall logging output generated by the system and application modules.

The library provides default logger instance named Log , which can be used for all typical

logging operations. Note that applications still need to instantiate at least one log handler

in order to enable logging, otherwise most of the logging operations will have no effect. In

the provided example, the application uses SerialLogHandler which sends the logging

output to the primary serial over USB interface.

Consider the following logging output as generated by the example application:

0000000047 [app] INFO: This is info message

0000000050 [app] WARN: This is warning message

0000000100 [app] ERROR: This is error message

0000000149 [app] INFO: System version: 0.6.0

Here, each line starts with a timestamp (a number of milliseconds since the system startup),

app is a default logging category, and INFO , WARN and ERROR are logging levels of the

respective log messages.

Every log message is always associated with some logging level that describes severity of

the message. Supported logging levels are defined by the LogLevel enum (from lowest to

highest level):

LOG_LEVEL_ALL : special value that can be used to enable logging of all messages

LOG_LEVEL_TRACE : verbose output for debugging purposes

LOG_LEVEL_INFO : regular information messages

Logging Levels

 // Format text message
 Log.info("System version: %s", (const char*)System.version());
}

void loop() {
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 168/221

LOG_LEVEL_WARN : warnings and non-critical errors

LOG_LEVEL_ERROR : error messages

LOG_LEVEL_NONE : special value that can be used to disable logging of any messages

For convenience, Logger class (and its default Log instance) provides separate logging

method for each of the defined logging levels.

Log handlers can be configured to filter out messages that are below a certain logging

level. By default, any messages below the LOG_LEVEL_INFO level are filtered out.

// EXAMPLE - message logging

Log.trace("This is trace message");
Log.info("This is info message");
Log.warn("This is warning message");
Log.error("This is error message");

// Specify logging level directly
Log(LOG_LEVEL_INFO, "This is info message");

// Log message with the default logging level (LOG_LEVEL_INFO)
Log("This is info message");

// EXAMPLE - basic filtering

// Log handler processing only warning and error messages
SerialLogHandler logHandler(LOG_LEVEL_WARN);

void setup() {
 Log.trace("This is trace message"); // Ignored by the handler
 Log.info("This is info message"); // Ignored by the handler
 Log.warn("This is warning message");
 Log.error("This is error message");
}

void loop() {
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 169/221

In the provided example, the trace and info messages will be filtered out according to the

log handler settings, which prevent log messages below the LOG_LEVEL_WARN level from

being logged:

0000000050 [app] WARN: This is warning message

0000000100 [app] ERROR: This is error message

In addition to logging level, log messages can also be associated with some category
name. Categories allow to organize system and application modules into namespaces, and

are used for more selective filtering of the logging output.

One of the typical use cases for category filtering is suppressing of non-critical system

messages while preserving application messages at lower logging levels. In the provided

example, a message that is not associated with the app category will be logged only if its

logging level is at or above the warning level (LOG_LEVEL_WARN).

Default Log logger uses app category for all messages generated via its logging methods.

In order to log messages with different category name it is necessary to instantiate another

logger, passing category name to its constructor.

Logging Categories

// EXAMPLE - filtering out system messages

SerialLogHandler logHandler(LOG_LEVEL_WARN, { // Logging level for non-
application messages
 { "app", LOG_LEVEL_ALL } // Logging level for application messages
});

// EXAMPLE - using custom loggers

void connect() {
 Logger log("app.network");
 log.trace("Connecting to server"); // Using local logger
}

SerialLogHandler logHandler(LOG_LEVEL_WARN, { // Logging level for non-
application messages
 { "app", LOG_LEVEL_INFO }, // Default logging level for all application

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 170/221

Category names are written in all lower case and may contain arbitrary number of

subcategories separated by period character. In order to not interfere with the system

logging, it is recommended to always add app prefix to all application-specific category

names.

The example application generates the following logging output:

0000000044 [app] INFO: System started

0000000044 [app.network] TRACE: Connecting to server

Note that the trace message containing device ID has been filtered out according to the

log handler settings, which prevent log messages with the app category from being

logged if their logging level is below the LOG_LEVEL_INFO level.

Category filters are specified using initializer list syntax with each element of the list

containing a filter string and a minimum logging level required for messages with

matching category to be logged. Note that filter string matches not only exact category

name but any of its subcategory names as well, for example:

a – matches a , a.b , a.b.c but not aaa or aaa.b

b.c – matches b.c , b.c.d but not a.b.c or b.ccc

If more than one filter matches a given category name, the most specific filter is used.

Additional Attributes

messages
 { "app.network", LOG_LEVEL_TRACE } // Logging level for networking
messages
});

void setup() {
 Log.info("System started"); // Using default logger instance
 Log.trace("My device ID: %s", (const char*)System.deviceID());
 connect();
}

void loop() {
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 171/221

As described in previous sections, certain log message attributes, such as a timestamp, are

automatically added to all generated messages. The library also defines some attributes

that can be used for application-specific needs:

code : arbitrary integer value (e.g. error code)

details : description string (e.g. error message)

The example application specifies code and details attributes for the error message,

generating the following logging output:

0000000084 [app] INFO: Connecting to server

0000000087 [app] ERROR: Connection error [code = 111, details = Connection refused]

In order to enable logging, application needs to instantiate at least one log handler. If

necessary, several different log handlers can be instantiated at the same time.

Log Handlers

// EXAMPLE - specifying additional attributes

SerialLogHandler logHandler;

int connect() {
 return ECONNREFUSED; // Return an error
}

void setup() {
 Log.info("Connecting to server");
 int error = connect();
 if (error) {
 // Get error message string
 const char *message = strerror(error);
 // Log message with additional attributes
 Log.code(error).details(message).error("Connection error");
 }
}

void loop() {
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 172/221

The library provides the following log handlers:

SerialLogHandler

Additional community-supported log handlers can be found further below.

This handler uses primary serial over USB interface for the logging output (Serial).

SerialLogHandler(LogLevel level, const Filters &filters)

Parameters:

level : default logging level (default value is LOG_LEVEL_INFO)

filters : category filters (not specified by default)

Serial1LogHandler

This handler uses the device's TX and RX pins for the logging output (Serial1).

Serial1LogHandler(LogLevel level, const Filters &filters)

Serial1LogHandler(int baud, LogLevel level, const Filters &filters)

Parameters:

level : default logging level (default value is LOG_LEVEL_INFO)

filters : category filters (not specified by default)

baud : baud rate (default value is 9600)

// EXAMPLE - enabling multiple log handlers

SerialLogHandler logHandler1;
Serial1LogHandler logHandler2(57600); // Baud rate

void setup() {
 Log.info("This is info message"); // Processed by all handlers
}

void loop() {
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 173/221

The log handlers below are written by the community and are not considered "Official"

Particle-supported log handlers. If you have any issues with them please raise an issue in

the forums or, ideally, in the online repo for the handler.

Papertrail Log Handler by barakwei. [Particle Build] [GitHub Repo] [Known Issues]

Web Log Handler by geeksville. [Particle Build] [GitHub Repo] [Known Issues]

More to come (feel free to add your own by editing the docs on GitHub)

This class is used to generate log messages. The library also provides default instance of

this class named Log , which can be used for all typical logging operations.

Logger()

Logger(const char *name)

Construct logger.

Parameters:

name : category name (default value is app)

const char* name()

Returns category name set for this logger.

Community Log Handlers

Logger Class

// EXAMPLE
Logger myLogger("app.main");

// EXAMPLE
const char *name = Log.name(); // Returns "app"

https://papertrailapp.com/
https://community.particle.io/users/barakwei/activity
https://build.particle.io/libs/585c5e64edfd74acf7000e7a/
https://github.com/barakwei/ParticlePapertrail
https://github.com/barakwei/ParticlePapertrail/issues/
https://github.com/geeksville
https://build.particle.io/libs/ParticleWebLog
https://github.com/geeksville/ParticleWebLog
https://github.com/geeksville/ParticleWebLog/issues/

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 174/221

void trace(const char *format, ...)

void info(const char *format, ...)

void warn(const char *format, ...)

void error(const char *format, ...)

Generate trace, info, warning or error message respectively.

Parameters:

format : format string

void log(const char *format, ...)

void operator()(const char *format, ...)

Generates log message with the default logging level (LOG_LEVEL_INFO).

Parameters:

format : format string

void log(LogLevel level, const char *format, ...)

void operator()(LogLevel level, const char *format, ...)

// EXAMPLE
Log.trace("This is trace message");
Log.info("This is info message");
Log.warn("This is warn message");
Log.error("This is error message");

// Format text message
Log.info("The secret of everything is %d", 42);

// EXAMPLE
Log("The secret of everything is %d", 42); // Generates info message

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 175/221

Generates log message with the specified logging level.

Parameters:

format : format string

level : logging level (default value is LOG_LEVEL_INFO)

bool isTraceEnabled()

bool isInfoEnabled()

bool isWarnEnabled()

bool isErrorEnabled()

Return true if logging is enabled for trace, info, warning or error messages respectively.

bool isLevelEnabled(LogLevel level)

Returns true if logging is enabled for the specified logging level.

Parameters:

level : logging level

// EXAMPLE
Log(LOG_LEVEL_INFO, "The secret of everything is %d", 42);

// EXAMPLE
if (Log.isTraceEnabled()) {
 // Do some heavy logging
}

// EXAMPLE
if (Log.isLevelEnabled(LOG_LEVEL_TRACE)) {
 // Do some heavy logging
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 176/221

It can be convenient to use C++ objects as global variables. You must be careful about

what you do in the constructor, however.

The first code example is the bad example, don't do this.

Global Object Constructors

#include "Particle.h"

SerialLogHandler logHandler;

class MyClass {
public:
 MyClass();
 virtual ~MyClass();

 void subscriptionHandler(const char *eventName, const char *data);
};

MyClass::MyClass() {
 // This is generally a bad idea. You should avoid doing this from a
constructor.
 Particle.subscribe("myEvent", &MyClass::subscriptionHandler, this,
MY_DEVICES);
}

MyClass::~MyClass() {

}

void MyClass::subscriptionHandler(const char *eventName, const char *data) {
 Log.info("eventName=%s data=%s", eventName, data);
}

// In this example, MyClass is a globally constructed object.
MyClass myClass;

void setup() {

}
void loop() {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 177/221

Making MyClass myClass a global variable is fine, and is a useful technique. However, it

contains a Particle.subscribe call in the constructor. This may fail, or crash the device.

You should avoid in a global constructor:

All functions in the Particle class (Particle.subscribe, Particle.variable, etc.)

Creation of threads

Hardware initialization including I2C and SPI

Calls to delay()

Any class that depends on another globally initialized class instance

The reason is that the order that the compiler initializes global objects varies, and is not

predictable. Thus sometimes it may work, but then later it may decide to reorder

initialization and may fail.

One solution is to use two-phase setup. Instead of putting the setup code in the

constructor, you put it in a setup() method of your class and call the setup() method from

the actual setup(). This is the recommended method.

}

#include "Particle.h"

SerialLogHandler logHandler;

class MyClass {
public:
 MyClass();
 virtual ~MyClass();

 void setup();

 void subscriptionHandler(const char *eventName, const char *data);
};

MyClass::MyClass() {
}

MyClass::~MyClass() {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 178/221

Another option is to allocate the class member using new instead.

}

void MyClass::setup() {
 Particle.subscribe("myEvent", &MyClass::subscriptionHandler, this,
MY_DEVICES);
}

void MyClass::subscriptionHandler(const char *eventName, const char *data) {
 Log.info("eventName=%s data=%s", eventName, data);
}

// In this example, MyClass is a globally constructed object.
MyClass myClass;

void setup() {
 myClass.setup();
}

void loop() {

}

#include "Particle.h"

SerialLogHandler logHandler;

class MyClass {
public:
 MyClass();
 virtual ~MyClass();

 void subscriptionHandler(const char *eventName, const char *data);
};

MyClass::MyClass() {
 // This is OK as long as MyClass is allocated with new from setup
 Particle.subscribe("myEvent", &MyClass::subscriptionHandler, this,
MY_DEVICES);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 179/221

Particle devices are programmed in C/C++. While the Arduino compatibility features are

available as described below, you can also write programs in plain C or C++, specifically:

Device OS Version C++ (.cpp and .ino) C (.c)

1.2.1 and later gcc C++14 gcc C11

earlier versions gcc C++11 gcc C11

The following documentation is based on the Arduino reference which can be found here.

The setup() function is called when an application starts. Use it to initialize variables, pin

modes, start using libraries, etc. The setup function will only run once, after each powerup

Language Syntax

Structure

setup()

MyClass::~MyClass() {

}

void MyClass::subscriptionHandler(const char *eventName, const char *data) {
 Log.info("eventName=%s data=%s", eventName, data);
}

// In this example, MyClass is allocated in setup() using new, and is safe
because
// the constructor is called during setup() time.
MyClass *myClass;

void setup() {
 myClass = new MyClass();
}

void loop() {

}

http://www.arduino.cc/en/Reference/HomePage

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 180/221

or device reset.

After creating a setup() function, which initializes and sets the initial values, the loop()

function does precisely what its name suggests, and loops consecutively, allowing your

program to change and respond. Use it to actively control the device. A return may be

used to exit the loop() before it completely finishes.

loop()

// EXAMPLE USAGE

int button = D0;
int LED = D1;
//setup initializes D0 as input and D1 as output
void setup()
{
 pinMode(button, INPUT_PULLDOWN);
 pinMode(LED, OUTPUT);
}

void loop()
{
 // ...
}

// EXAMPLE USAGE

int button = D0;
int LED = D1;
//setup initializes D0 as input and D1 as output
void setup()
{
 pinMode(button, INPUT_PULLDOWN);
 pinMode(LED, OUTPUT);
}

//loops to check if button was pressed,
//if it was, then it turns ON the LED,
//else the LED remains OFF
void loop()

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 181/221

if , which is used in conjunction with a comparison operator, tests whether a certain

condition has been reached, such as an input being above a certain number.

The program tests to see if someVariable is greater than 50. If it is, the program takes a

particular action. Put another way, if the statement in parentheses is true, the statements

inside the brackets are run. If not, the program skips over the code.

The brackets may be omitted after an if statement. If this is done, the next line (defined by

the semicolon) becomes the only conditional statement.

Control structures

if

{
 if (digitalRead(button) == HIGH)
 digitalWrite(LED,HIGH);
 else
 digitalWrite(LED,LOW);
}

// SYNTAX
if (someVariable > 50)
{
 // do something here
}

if (x > 120) digitalWrite(LEDpin, HIGH);

if (x > 120)
digitalWrite(LEDpin, HIGH);

if (x > 120){ digitalWrite(LEDpin, HIGH); }

if (x > 120)
{
 digitalWrite(LEDpin1, HIGH);

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 182/221

The statements being evaluated inside the parentheses require the use of one or more

operators:

WARNING: Beware of accidentally using the single equal sign (e.g. if (x = 10)). The

single equal sign is the assignment operator, and sets x to 10 (puts the value 10 into the

variable x). Instead use the double equal sign (e.g. if (x == 10)), which is the

comparison operator, and tests whether x is equal to 10 or not. The latter statement is only

true if x equals 10, but the former statement will always be true.

This is because C evaluates the statement if (x=10) as follows: 10 is assigned to x

(remember that the single equal sign is the assignment operator), so x now contains 10.

Then the 'if' conditional evaluates 10, which always evaluates to TRUE, since any non-zero

number evaluates to TRUE. Consequently, if (x = 10) will always evaluate to TRUE, which

is not the desired result when using an 'if' statement. Additionally, the variable x will be set

to 10, which is also not a desired action.

if can also be part of a branching control structure using the if...else] construction.

if/else allows greater control over the flow of code than the basic if statement, by allowing

multiple tests to be grouped together. For example, an analog input could be tested and

one action taken if the input was less than 500, and another action taken if the input was

500 or greater. The code would look like this:

Comparison Operators

if...else

 digitalWrite(LEDpin2, HIGH);
} // all are correct

x == y (x is equal to y)
x != y (x is not equal to y)
x < y (x is less than y)
x > y (x is greater than y)
x <= y (x is less than or equal to y)
x >= y (x is greater than or equal to y)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 183/221

else can proceed another if test, so that multiple, mutually exclusive tests can be run at

the same time.

Each test will proceed to the next one until a true test is encountered. When a true test is

found, its associated block of code is run, and the program then skips to the line following

the entire if/else construction. If no test proves to be true, the default else block is

executed, if one is present, and sets the default behavior.

Note that an else if block may be used with or without a terminating else block and vice

versa. An unlimited number of such else if branches is allowed.

Another way to express branching, mutually exclusive tests, is with the switch case

statement.

// SYNTAX
if (pinFiveInput < 500)
{
 // action A
}
else
{
 // action B
}

if (pinFiveInput < 500)
{
 // do Thing A
}
else if (pinFiveInput >= 1000)
{
 // do Thing B
}
else
{
 // do Thing C
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 184/221

The for statement is used to repeat a block of statements enclosed in curly braces. An

increment counter is usually used to increment and terminate the loop. The for statement

is useful for any repetitive operation, and is often used in combination with arrays to

operate on collections of data/pins.

There are three parts to the for loop header:

The initialization happens first and exactly once. Each time through the loop, the condition
is tested; if it's true, the statement block, and the increment is executed, then the condition

is tested again. When the condition becomes false, the loop ends.

for

// SYNTAX
for (initialization; condition; increment)
{
 //statement(s);
}

// EXAMPLE USAGE

// slowy make the LED glow brighter
int ledPin = D1; // LED in series with 470 ohm resistor on pin D1

void setup()
{
 // set ledPin as an output
 pinMode(ledPin,OUTPUT);
}

void loop()
{
 for (int i=0; i <= 255; i++){
 analogWrite(ledPin, i);
 delay(10);
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 185/221

The C for loop is much more flexible than for loops found in some other computer

languages, including BASIC. Any or all of the three header elements may be omitted,

although the semicolons are required. Also the statements for initialization, condition, and

increment can be any valid C statements with unrelated variables, and use any C datatypes

including floats. These types of unusual for statements may provide solutions to some rare

programming problems.

For example, using a multiplication in the increment line will generate a logarithmic

progression:

Another example, fade an LED up and down with one for loop:

for(int x = 2; x < 100; x = x * 1.5)
{
 Serial.print(x);
}
//Generates: 2,3,4,6,9,13,19,28,42,63,94

// slowy make the LED glow brighter
int ledPin = D1; // LED in series with 470 ohm resistor on pin D1

void setup()
{
 // set ledPin as an output
 pinMode(ledPin,OUTPUT);
}

void loop()
{
 int x = 1;
 for (int i = 0; i > -1; i = i + x)
 {
 analogWrite(ledPin, i);
 if (i == 255) x = -1; // switch direction at peak
 delay(10);
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 186/221

Like if statements, switch ... case controls the flow of programs by allowing programmers

to specify different code that should be executed in various conditions. In particular, a

switch statement compares the value of a variable to the values specified in case

statements. When a case statement is found whose value matches that of the variable, the

code in that case statement is run.

The break keyword exits the switch statement, and is typically used at the end of each

case. Without a break statement, the switch statement will continue executing the following

expressions ("falling-through") until a break, or the end of the switch statement is reached.

var is the variable whose value to compare to the various cases label is a value to

compare the variable to

switch case

// SYNTAX
switch (var)
{
 case label:
 // statements
 break;
 case label:
 // statements
 break;
 default:
 // statements
}

// EXAMPLE USAGE

switch (var)
{
 case 1:
 // do something when var equals 1
 break;
 case 2:
 // do something when var equals 2
 break;
 default:

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 187/221

while loops will loop continuously, and infinitely, until the expression inside the

parenthesis, () becomes false. Something must change the tested variable, or the while

loop will never exit. This could be in your code, such as an incremented variable, or an

external condition, such as testing a sensor.

expression is a (boolean) C statement that evaluates to true or false.

The do loop works in the same manner as the while loop, with the exception that the

condition is tested at the end of the loop, so the do loop will always run at least once.

while

do... while

 // if nothing else matches, do the
 // default (which is optional)
}

// SYNTAX
while(expression)
{
 // statement(s)
}

// EXAMPLE USAGE

var = 0;
while(var < 200)
{
 // do something repetitive 200 times
 var++;
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 188/221

break is used to exit from a do , for , or while loop, bypassing the normal loop condition.

It is also used to exit from a switch statement.

break

// SYNTAX
do
{
 // statement block
} while (test condition);

// EXAMPLE USAGE

do
{
 delay(50); // wait for sensors to stabilize
 x = readSensors(); // check the sensors

} while (x < 100);

// EXAMPLE USAGE

for (int x = 0; x < 255; x++)
{
 digitalWrite(ledPin, x);
 sens = analogRead(sensorPin);
 if (sens > threshold)
 {
 x = 0;
 break; // exit for() loop on sensor detect
 }
 delay(50);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 189/221

The continue statement skips the rest of the current iteration of a loop (do , for , or while).

It continues by checking the conditional expression of the loop, and proceeding with any

subsequent iterations.

Terminate a function and return a value from a function to the calling function, if desired.

The return keyword is handy to test a section of code without having to "comment out"

large sections of possibly buggy code.

continue

return

// EXAMPLE USAGE

for (x = 0; x < 255; x++)
{
 if (x > 40 && x < 120) continue; // create jump in values

 digitalWrite(PWMpin, x);
 delay(50);
}

//EXAMPLE USAGE

// A function to compare a sensor input to a threshold
 int checkSensor()
 {
 if (analogRead(0) > 400) return 1;
 else return 0;
}

void loop()
{
 // brilliant code idea to test here

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 190/221

Transfers program flow to a labeled point in the program

TIP: The use of goto is discouraged in C programming, and some authors of C

programming books claim that the goto statement is never necessary, but used

judiciously, it can simplify certain programs. The reason that many programmers frown

upon the use of goto is that with the unrestrained use of goto statements, it is easy to

create a program with undefined program flow, which can never be debugged.

With that said, there are instances where a goto statement can come in handy, and simplify

coding. One of these situations is to break out of deeply nested for loops, or if logic

blocks, on a certain condition.

goto

 return;

 // the rest of a dysfunctional sketch here
 // this code will never be executed
}

// SYNTAX

label:

goto label; // sends program flow to the label

// EXAMPLE USAGE

for(byte r = 0; r < 255; r++) {
 for(byte g = 255; g > -1; g--) {
 for(byte b = 0; b < 255; b++) {
 if (analogRead(0) > 250) {
 goto bailout;
 }
 // more statements ...
 }
 }

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 191/221

Used to end a statement.

int a = 13;

Tip: Forgetting to end a line in a semicolon will result in a compiler error. The error text

may be obvious, and refer to a missing semicolon, or it may not. If an impenetrable or

seemingly illogical compiler error comes up, one of the first things to check is a missing

semicolon, in the immediate vicinity, preceding the line at which the compiler complained.

Curly braces (also referred to as just "braces" or as "curly brackets") are a major part of the

C programming language. They are used in several different constructs, outlined below,

and this can sometimes be confusing for beginners.

Further syntax

; (semicolon)

{} (curly braces)

}
bailout:
// Code execution jumps here from
// goto bailout; statement

//The main uses of curly braces

//Functions
 void myfunction(datatype argument){
 statements(s)
 }

//Loops
 while (boolean expression)
 {
 statement(s)
 }

 do
 {

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 192/221

An opening curly brace "{" must always be followed by a closing curly brace "}". This is a

condition that is often referred to as the braces being balanced.

Beginning programmers, and programmers coming to C from the BASIC language often

find using braces confusing or daunting. After all, the same curly braces replace the

RETURN statement in a subroutine (function), the ENDIF statement in a conditional and the

NEXT statement in a FOR loop.

Because the use of the curly brace is so varied, it is good programming practice to type the

closing brace immediately after typing the opening brace when inserting a construct which

requires curly braces. Then insert some carriage returns between your braces and begin

inserting statements. Your braces, and your attitude, will never become unbalanced.

Unbalanced braces can often lead to cryptic, impenetrable compiler errors that can

sometimes be hard to track down in a large program. Because of their varied usages,

braces are also incredibly important to the syntax of a program and moving a brace one or

two lines will often dramatically affect the meaning of a program.

 statement(s)
 } while (boolean expression);

 for (initialisation; termination condition; incrementing expr)
 {
 statement(s)
 }

//Conditional statements
 if (boolean expression)
 {
 statement(s)
 }

 else if (boolean expression)
 {
 statement(s)
 }
 else
 {
 statement(s)
 }

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 193/221

Comments are lines in the program that are used to inform yourself or others about the

way the program works. They are ignored by the compiler, and not exported to the

processor, so they don't take up any space on the device.

Comments only purpose are to help you understand (or remember) how your program

works or to inform others how your program works. There are two different ways of

marking a line as a comment:

TIP: When experimenting with code, "commenting out" parts of your program is a

convenient way to remove lines that may be buggy. This leaves the lines in the code, but

turns them into comments, so the compiler just ignores them. This can be especially useful

when trying to locate a problem, or when a program refuses to compile and the compiler

error is cryptic or unhelpful.

#define is a useful C component that allows the programmer to give a name to a constant

value before the program is compiled. Defined constants don't take up any program

memory space on the chip. The compiler will replace references to these constants with

the defined value at compile time.

// (single line comment)

/* */ (multi-line comment)

#define

// EXAMPLE USAGE

x = 5; // This is a single line comment. Anything after the slashes is a
comment
 // to the end of the line

/* this is multiline comment - use it to comment out whole blocks of code

if (gwb == 0) { // single line comment is OK inside a multiline comment
 x = 3; /* but not another multiline comment - this is invalid */
}
// don't forget the "closing" comment - they have to be balanced!
*/

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 194/221

#define constantName value

Note that the # is necessary.

This can have some unwanted side effects if the constant name in a #define is used in

some other constant or variable name. In that case the text would be replaced by the

#define value.

In general, the const keyword is preferred for defining constants and should be used

instead of #define.

TIP: There is no semicolon after the #define statement. If you include one, the compiler will

throw cryptic errors further down the page.

#define ledPin 3; // this is an error

Similarly, including an equal sign after the #define statement will also generate a cryptic

compiler error further down the page.

#define ledPin = 3 // this is also an error

#include is used to include outside libraries in your application code. This gives the

programmer access to a large group of standard C libraries (groups of pre-made

functions), and also libraries written especially for your device.

Note that #include, similar to #define, has no semicolon terminator, and the compiler will

yield cryptic error messages if you add one.

#include

Arithmetic operators

// EXAMPLE USAGE

#define ledPin 3
// The compiler will replace any mention of ledPin with the value 3 at
compile time.

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 195/221

Stores the value to the right of the equal sign in the variable to the left of the equal sign.

The single equal sign in the C programming language is called the assignment operator. It

has a different meaning than in algebra class where it indicated an equation or equality.

The assignment operator tells the microcontroller to evaluate whatever value or expression

is on the right side of the equal sign, and store it in the variable to the left of the equal sign.

TIP: The variable on the left side of the assignment operator (= sign) needs to be able to

hold the value stored in it. If it is not large enough to hold a value, the value stored in the

variable will be incorrect.

Don't confuse the assignment operator = (single equal sign) with the comparison operator

== (double equal signs), which evaluates whether two expressions are equal.

These operators return the sum, difference, product, or quotient (respectively) of the two

operands. The operation is conducted using the data type of the operands, so, for

example, 9 / 4 gives 2 since 9 and 4 are ints. This also means that the operation can

overflow if the result is larger than that which can be stored in the data type (e.g. adding 1

to an int with the value 2,147,483,647 gives -2,147,483,648). If the operands are of

different types, the "larger" type is used for the calculation.

If one of the numbers (operands) are of the type float or of type double, floating point

math will be used for the calculation.

= (assignment operator)

+ - * / (addition subtraction multiplication division)

// EXAMPLE USAGE

int sensVal; // declare an integer variable named sensVal
senVal = analogRead(A0); // store the (digitized) input voltage at analog
pin A0 in SensVal

// EXAMPLE USAGES

y = y + 3;
x = x - 7;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 196/221

value1 and value2 can be any variable or constant.

TIPS:

Know that integer constants default to int, so some constant calculations may overflow

(e.g. 50 * 50,000,000 will yield a negative result).

Choose variable sizes that are large enough to hold the largest results from your

calculations

Know at what point your variable will "roll over" and also what happens in the other

direction e.g. (0 - 1) OR (0 + 2147483648)

For math that requires fractions, use float variables, but be aware of their drawbacks:

large size, slow computation speeds

Use the cast operator e.g. (int)myFloat to convert one variable type to another on the

fly.

Calculates the remainder when one integer is divided by another. It is useful for keeping a

variable within a particular range (e.g. the size of an array). It is defined so that a % b == a

- ((a / b) * b) .

result = dividend % divisor

dividend is the number to be divided and divisor is the number to divide by.

result is the remainder

% (modulo)

i = j * 6;
r = r / 5;

// SYNTAX
result = value1 + value2;
result = value1 - value2;
result = value1 * value2;
result = value1 / value2;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 197/221

The remainder function can have unexpected behavior when some of the operands are

negative. If the dividend is negative, then the result will be the smallest negative

equivalency class. In other words, when a is negative, (a % b) == (a mod b) - b where (a

mod b) follows the standard mathematical definition of mod. When the divisor is negative,

the result is the same as it would be if it was positive.

TIP: The modulo operator does not work on floats. For floats, an equivalent expression to a

% b is a - (b * ((int)(a / b)))

These can be used inside the condition of an if statement.

Boolean operators

// EXAMPLE USAGES

x = 9 % 5; // x now contains 4
x = 5 % 5; // x now contains 0
x = 4 % 5; // x now contains 4
x = 7 % 5; // x now contains 2
x = -7 % 5; // x now contains -2
x = 7 % -5; // x now contains 2
x = -7 % -5; // x now contains -2

EXAMPLE CODE
//update one value in an array each time through a loop

int values[10];
int i = 0;

void setup() {}

void loop()
{
 values[i] = analogRead(A0);
 i = (i + 1) % 10; // modulo operator rolls over variable
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 198/221

True only if both operands are true, e.g.

True if either operand is true, e.g.

True if the operand is false, e.g.

WARNING: Make sure you don't mistake the boolean AND operator, && (double

ampersand) for the bitwise AND operator & (single ampersand). They are entirely different

beasts.

&& (and)

|| (or)

! (not)

if (digitalRead(D2) == HIGH && digitalRead(D3) == HIGH)
{
 // read two switches
 // ...
}
//is true only if both inputs are high.

if (x > 0 || y > 0)
{
 // ...
}
//is true if either x or y is greater than 0.

if (!x)
{
 // ...
}
//is true if x is false (i.e. if x equals 0).

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 199/221

Similarly, do not confuse the boolean || (double pipe) operator with the bitwise OR

operator | (single pipe).

The bitwise not ~ (tilde) looks much different than the boolean not ! (exclamation point or

"bang" as the programmers say) but you still have to be sure which one you want where.

if (a >= 10 && a <= 20){} // true if a is between 10 and 20

The bitwise AND operator in C++ is a single ampersand, &, used between two other

integer expressions. Bitwise AND operates on each bit position of the surrounding

expressions independently, according to this rule: if both input bits are 1, the resulting

output is 1, otherwise the output is 0. Another way of expressing this is:

One of the most common uses of bitwise AND is to select a particular bit (or bits) from an

integer value, often called masking.

The bitwise OR operator in C++ is the vertical bar symbol, |. Like the & operator, | operates

independently each bit in its two surrounding integer expressions, but what it does is

Bitwise operators

& (bitwise and)

| (bitwise or)

 0 0 1 1 operand1
 0 1 0 1 operand2

 0 0 0 1 (operand1 & operand2) - returned result

// EXAMPLE USAGE

int a = 92; // in binary: 0000000001011100
int b = 101; // in binary: 0000000001100101
int c = a & b; // result: 0000000001000100, or 68 in decimal.

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 200/221

different (of course). The bitwise OR of two bits is 1 if either or both of the input bits is 1,

otherwise it is 0. In other words:

There is a somewhat unusual operator in C++ called bitwise EXCLUSIVE OR, also known as

bitwise XOR. (In English this is usually pronounced "eks-or".) The bitwise XOR operator is

written using the caret symbol ^. This operator is very similar to the bitwise OR operator |,

only it evaluates to 0 for a given bit position when both of the input bits for that position

are 1:

Another way to look at bitwise XOR is that each bit in the result is a 1 if the input bits are

different, or 0 if they are the same.

^ (bitwise xor)

 0 0 1 1 operand1
 0 1 0 1 operand2

 0 1 1 1 (operand1 | operand2) - returned result

// EXAMPLE USAGE

int a = 92; // in binary: 0000000001011100
int b = 101; // in binary: 0000000001100101
int c = a | b; // result: 0000000001111101, or 125 in decimal.

 0 0 1 1 operand1
 0 1 0 1 operand2

 0 1 1 0 (operand1 ^ operand2) - returned result

// EXAMPLE USAGE

int x = 12; // binary: 1100

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 201/221

The ^ operator is often used to toggle (i.e. change from 0 to 1, or 1 to 0) some of the bits in

an integer expression. In a bitwise OR operation if there is a 1 in the mask bit, that bit is

inverted; if there is a 0, the bit is not inverted and stays the same.

The bitwise NOT operator in C++ is the tilde character ~. Unlike & and |, the bitwise NOT

operator is applied to a single operand to its right. Bitwise NOT changes each bit to its

opposite: 0 becomes 1, and 1 becomes 0. For example:

You might be surprised to see a negative number like -104 as the result of this operation.

This is because the highest bit in an int variable is the so-called sign bit. If the highest bit is

1, the number is interpreted as negative. This encoding of positive and negative numbers

is referred to as two's complement. For more information, see the Wikipedia article on

two's complement.

As an aside, it is interesting to note that for any integer x, ~x is the same as -x-1.

At times, the sign bit in a signed integer expression can cause some unwanted surprises.

There are two bit shift operators in C++: the left shift operator << and the right shift

operator >>. These operators cause the bits in the left operand to be shifted left or right by

the number of positions specified by the right operand.

More on bitwise math may be found here.

~ (bitwise not)

<< (bitwise left shift), >> (bitwise right shift)

int y = 10; // binary: 1010
int z = x ^ y; // binary: 0110, or decimal 6

 0 1 operand1

 1 0 ~ operand1

int a = 103; // binary: 0000000001100111
int b = ~a; // binary: 1111111110011000 = -104

http://en.wikipedia.org/wiki/Twos_complement
http://playground.arduino.cc/Code/BitMath

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 202/221

variable can be byte , int , long number_of_bits and integer <= 32

When you shift a value x by y bits (x << y), the leftmost y bits in x are lost, literally shifted

out of existence:

If you are certain that none of the ones in a value are being shifted into oblivion, a simple

way to think of the left-shift operator is that it multiplies the left operand by 2 raised to the

right operand power. For example, to generate powers of 2, the following expressions can

be employed:

variable << number_of_bits
variable >> number_of_bits

// EXAMPLE USAGE

int a = 5; // binary: 0000000000000101
int b = a << 3; // binary: 0000000000101000, or 40 in decimal
int c = b >> 3; // binary: 0000000000000101, or back to 5 like we started
with

int a = 5; // binary: 0000000000000101
int b = a << 14; // binary: 0100000000000000 - the first 1 in 101 was
discarded

1 << 0 == 1
1 << 1 == 2
1 << 2 == 4
1 << 3 == 8
...
1 << 8 == 256
1 << 9 == 512
1 << 10 == 1024
...

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 203/221

When you shift x right by y bits (x >> y), and the highest bit in x is a 1, the behavior

depends on the exact data type of x. If x is of type int, the highest bit is the sign bit,

determining whether x is negative or not, as we have discussed above. In that case, the

sign bit is copied into lower bits, for esoteric historical reasons:

This behavior, called sign extension, is often not the behavior you want. Instead, you may

wish zeros to be shifted in from the left. It turns out that the right shift rules are different for

unsigned int expressions, so you can use a typecast to suppress ones being copied from

the left:

If you are careful to avoid sign extension, you can use the right-shift operator >> as a way

to divide by powers of 2. For example:

Increment or decrement a variable

Compound operators

++ (increment), -- (decrement)

int x = -16; // binary: 1111111111110000
int y = x >> 3; // binary: 1111111111111110

int x = -16; // binary: 1111111111110000
int y = (unsigned int)x >> 3; // binary: 0001111111111110

int x = 1000;
int y = x >> 3; // integer division of 1000 by 8, causing y = 125

// SYNTAX
x++; // increment x by one and returns the old value of x
++x; // increment x by one and returns the new value of x

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 204/221

where x is an integer or long (possibly unsigned)

+= (compound addition)

-= (compound subtraction)

*= (compound multiplication)

/= (compound division)

Perform a mathematical operation on a variable with another constant or variable. The +=

(et al) operators are just a convenient shorthand for the expanded syntax.

x can be any variable type y can be any variable type or constant

compound arithmetic

x-- ; // decrement x by one and returns the old value of x
--x ; // decrement x by one and returns the new value of x

// EXAMPLE USAGE

x = 2;
y = ++x; // x now contains 3, y contains 3
y = x--; // x contains 2 again, y still contains 3

// SYNTAX
x += y; // equivalent to the expression x = x + y;
x -= y; // equivalent to the expression x = x - y;
x *= y; // equivalent to the expression x = x * y;
x /= y; // equivalent to the expression x = x / y;

// EXAMPLE USAGE

x = 2;
x += 4; // x now contains 6
x -= 3; // x now contains 3

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 205/221

The compound bitwise AND operator (&=) is often used with a variable and a constant to

force particular bits in a variable to the LOW state (to 0). This is often referred to in

programming guides as "clearing" or "resetting" bits.

x &= y; // equivalent to x = x & y;

x can be a char, int or long variable y can be an integer constant, char, int, or long

Bits that are "bitwise ANDed" with 0 are cleared to 0 so, if myByte is a byte variable, myByte

& B00000000 = 0;

Bits that are "bitwise ANDed" with 1 are unchanged so, myByte & B11111111 = myByte;

Note: because we are dealing with bits in a bitwise operator - it is convenient to use the

binary formatter with constants. The numbers are still the same value in other

representations, they are just not as easy to understand. Also, B00000000 is shown for

clarity, but zero in any number format is zero (hmmm something philosophical there?)

Consequently - to clear (set to zero) bits 0 & 1 of a variable, while leaving the rest of the

variable unchanged, use the compound bitwise AND operator (&=) with the constant

B11111100

&= (compound bitwise and)

x *= 10; // x now contains 30
x /= 2; // x now contains 15

 0 0 1 1 operand1
 0 1 0 1 operand2

 0 0 0 1 (operand1 & operand2) - returned result

 1 0 1 0 1 0 1 0 variable
 1 1 1 1 1 1 0 0 mask

 1 0 1 0 1 0 0 0

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 206/221

Here is the same representation with the variable's bits replaced with the symbol x

So if: myByte = 10101010; myByte &= B1111100 == B10101000;

The compound bitwise OR operator (|=) is often used with a variable and a constant to

"set" (set to 1) particular bits in a variable.

x can be a char, int or long variable y can be an integer constant or char, int or long

Bits that are "bitwise ORed" with 0 are unchanged, so if myByte is a byte variable, myByte |

B00000000 = myByte;

|= (compound bitwise or)

 variable unchanged
 bits cleared

 x x x x x x x x variable
 1 1 1 1 1 1 0 0 mask

 x x x x x x 0 0

 variable unchanged
 bits cleared

// SYNTAX
x |= y; // equivalent to x = x | y;

 0 0 1 1 operand1
 0 1 0 1 operand2

 0 1 1 1 (operand1 | operand2) - returned result

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 207/221

Bits that are "bitwise ORed" with 1 are set to 1 so: myByte | B11111111 = B11111111;

Consequently - to set bits 0 & 1 of a variable, while leaving the rest of the variable

unchanged, use the compound bitwise OR operator (|=) with the constant B00000011

Here is the same representation with the variables bits replaced with the symbol x

So if: myByte = B10101010; myByte |= B00000011 == B10101011;

When reading or writing to a digital pin there are only two possible values a pin can

take/be-set-to: HIGH and LOW.

HIGH

The meaning of HIGH (in reference to a pin) is somewhat different depending on whether a

pin is set to an INPUT or OUTPUT . When a pin is configured as an INPUT with pinMode, and

Variables

HIGH | LOW

 1 0 1 0 1 0 1 0 variable
 0 0 0 0 0 0 1 1 mask

 1 0 1 0 1 0 1 1

 variable unchanged
 bits set

 x x x x x x x x variable
 0 0 0 0 0 0 1 1 mask

 x x x x x x 1 1

 variable unchanged
 bits set

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 208/221

read with digitalRead, the microcontroller will report HIGH if a voltage of 3 volts or more is

present at the pin.

A pin may also be configured as an INPUT with pinMode , and subsequently made HIGH

with digitalWrite , this will set the internal 40K pullup resistors, which will steer the input

pin to a HIGH reading unless it is pulled LOW by external circuitry. This is how

INPUT_PULLUP works as well

When a pin is configured to OUTPUT with pinMode , and set to HIGH with digitalWrite , the

pin is at 3.3 volts. In this state it can source current, e.g. light an LED that is connected

through a series resistor to ground, or to another pin configured as an output, and set to

LOW.

LOW

The meaning of LOW also has a different meaning depending on whether a pin is set to

INPUT or OUTPUT . When a pin is configured as an INPUT with pinMode , and read with

digitalRead , the microcontroller will report LOW if a voltage of 1.5 volts or less is present at

the pin.

When a pin is configured to OUTPUT with pinMode , and set to LOW with digitalWrite, the pin

is at 0 volts. In this state it can sink current, e.g. light an LED that is connected through a

series resistor to, +3.3 volts, or to another pin configured as an output, and set to HIGH.

Digital pins can be used as INPUT, INPUT_PULLUP, INPUT_PULLDOWN or OUTPUT.

Changing a pin with pinMode() changes the electrical behavior of the pin.

Pins Configured as INPUT

The device's pins configured as INPUT with pinMode() are said to be in a high-impedance

state. Pins configured as INPUT make extremely small demands on the circuit that they are

sampling, equivalent to a series resistor of 100 Megohms in front of the pin. This makes

them useful for reading a sensor, but not powering an LED.

If you have your pin configured as an INPUT , you will want the pin to have a reference to

ground, often accomplished with a pull-down resistor (a resistor going to ground).

Pins Configured as INPUT_PULLUP or INPUT_PULLDOWN

INPUT, OUTPUT, INPUT_PULLUP, INPUT_PULLDOWN

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 209/221

The STM32 microcontroller has internal pull-up resistors (resistors that connect to power

internally) and pull-down resistors (resistors that connect to ground internally) that you can

access. If you prefer to use these instead of external resistors, you can use these argument

in pinMode() .

Pins Configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This

means that they can provide a substantial amount of current to other circuits. STM32 pins

can source (provide positive current) or sink (provide negative current) up to 20 mA

(milliamps) of current to other devices/circuits. This makes them useful for powering LED's

but useless for reading sensors. Pins configured as outputs can also be damaged or

destroyed if short circuited to either ground or 3.3 volt power rails. The amount of current

provided by the pin is also not enough to power most relays or motors, and some interface

circuitry will be required.

There are two constants used to represent truth and falsity in the Arduino language: true,

and false.

false

false is the easier of the two to define. false is defined as 0 (zero).

true

true is often said to be defined as 1, which is correct, but true has a wider definition. Any

integer which is non-zero is true, in a Boolean sense. So -1, 2 and -200 are all defined as

true, too, in a Boolean sense.

Note that the true and false constants are typed in lowercase unlike HIGH, LOW, INPUT, &

OUTPUT.

Note: The Core/Photon/Electron uses a 32-bit ARM based microcontroller and hence the

datatype lengths are different from a standard 8-bit system (for e.g. Arduino Uno).

true | false

Data Types

void

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 210/221

The void keyword is used only in function declarations. It indicates that the function is

expected to return no information to the function from which it was called.

A boolean holds one of two values, true or false . (Each boolean variable occupies one

byte of memory.)

boolean

//EXAMPLE
// actions are performed in the functions "setup" and "loop"
// but no information is reported to the larger program

void setup()
{
 // ...
}

void loop()
{
 // ...
}

//EXAMPLE

int LEDpin = D0; // LED on D0
int switchPin = A0; // momentary switch on A0, other side connected to
ground

boolean running = false;

void setup()
{
 pinMode(LEDpin, OUTPUT);
 pinMode(switchPin, INPUT_PULLUP);
}

void loop()
{
 if (digitalRead(switchPin) == LOW)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 211/221

A data type that takes up 1 byte of memory that stores a character value. Character literals

are written in single quotes, like this: 'A' (for multiple characters - strings - use double

quotes: "ABC"). Characters are stored as numbers however. You can see the specific

encoding in the ASCII chart. This means that it is possible to do arithmetic on characters, in

which the ASCII value of the character is used (e.g. 'A' + 1 has the value 66, since the ASCII

value of the capital letter A is 65). See Serial.println reference for more on how characters

are translated to numbers. The char datatype is a signed type, meaning that it encodes

numbers from -128 to 127. For an unsigned, one-byte (8 bit) data type, use the byte data

type.

An unsigned data type that occupies 1 byte of memory. Same as the byte datatype. The

unsigned char datatype encodes numbers from 0 to 255. For consistency of Arduino

programming style, the byte data type is to be preferred.

char

unsigned char

 { // switch is pressed - pullup keeps pin high normally
 delay(100); // delay to debounce switch
 running = !running; // toggle running variable
 digitalWrite(LEDpin, running) // indicate via LED
 }
}

//EXAMPLE

char myChar = 'A';
char myChar = 65; // both are equivalent

//EXAMPLE

unsigned char myChar = 240;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 212/221

A byte stores an 8-bit unsigned number, from 0 to 255.

Integers are your primary data-type for number storage. On the Core/Photon/Electron, an

int stores a 32-bit (4-byte) value. This yields a range of -2,147,483,648 to 2,147,483,647

(minimum value of -2^31 and a maximum value of (2^31) - 1). int's store negative numbers

with a technique called 2's complement math. The highest bit, sometimes referred to as

the "sign" bit, flags the number as a negative number. The rest of the bits are inverted and

1 is added.

Other variations:

int32_t : 32 bit signed integer

int16_t : 16 bit signed integer

int8_t : 8 bit signed integer

The Core/Photon/Electron stores a 4 byte (32-bit) value, ranging from 0 to 4,294,967,295

(2^32 - 1). The difference between unsigned ints and (signed) ints, lies in the way the

highest bit, sometimes referred to as the "sign" bit, is interpreted.

Other variations:

uint32_t : 32 bit unsigned integer

uint16_t : 16 bit unsigned integer

uint8_t : 8 bit unsigned integer

byte

int

unsigned int

word

//EXAMPLE

byte b = 0x11;

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 213/221

word stores a 32-bit unsigned number, from 0 to 4,294,967,295.

Long variables are extended size variables for number storage, and store 32 bits (4 bytes),

from -2,147,483,648 to 2,147,483,647.

Unsigned long variables are extended size variables for number storage, and store 32 bits

(4 bytes). Unlike standard longs unsigned longs won't store negative numbers, making

their range from 0 to 4,294,967,295 (2^32 - 1).

A short is a 16-bit data-type. This yields a range of -32,768 to 32,767 (minimum value of

-2^15 and a maximum value of (2^15) - 1).

Datatype for floating-point numbers, a number that has a decimal point. Floating-point

numbers are often used to approximate analog and continuous values because they have

greater resolution than integers. Floating-point numbers can be as large as

3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of

information.

Floating point numbers are not exact, and may yield strange results when compared. For

example 6.0 / 3.0 may not equal 2.0. You should instead check that the absolute value of

the difference between the numbers is less than some small number. Floating point math is

also much slower than integer math in performing calculations, so should be avoided if, for

example, a loop has to run at top speed for a critical timing function. Programmers often

go to some lengths to convert floating point calculations to integer math to increase

speed.

Double precision floating point number. On the Core/Photon/Electron, doubles have 8-

byte (64 bit) precision.

long

unsigned long

short

float

double

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 214/221

A string can be made out of an array of type char and null-terminated.

Possibilities for declaring strings:

Declare an array of chars without initializing it as in Str1

Declare an array of chars (with one extra char) and the compiler will add the required

null character, as in Str2

Explicitly add the null character, Str3

Initialize with a string constant in quotation marks; the compiler will size the array to fit

the string constant and a terminating null character, Str4

Initialize the array with an explicit size and string constant, Str5

Initialize the array, leaving extra space for a larger string, Str6

Null termination: Generally, strings are terminated with a null character (ASCII code 0). This

allows functions (like Serial.print()) to tell where the end of a string is. Otherwise, they

would continue reading subsequent bytes of memory that aren't actually part of the string.

This means that your string needs to have space for one more character than the text you

want it to contain. That is why Str2 and Str5 need to be eight characters, even though

"arduino" is only seven - the last position is automatically filled with a null character. Str4

will be automatically sized to eight characters, one for the extra null. In Str3, we've explicitly

included the null character (written '\0') ourselves. Note that it's possible to have a string

without a final null character (e.g. if you had specified the length of Str2 as seven instead of

eight). This will break most functions that use strings, so you shouldn't do it intentionally. If

you notice something behaving strangely (operating on characters not in the string),

however, this could be the problem.

string - char array

// EXAMPLES

char Str1[15];
char Str2[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o'};
char Str3[8] = {'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0'};
char Str4[] = "arduino";
char Str5[8] = "arduino";
char Str6[15] = "arduino";

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 215/221

Single quotes or double quotes? Strings are always defined inside double quotes ("Abc")

and characters are always defined inside single quotes('A').

Wrapping long strings

Arrays of strings: It is often convenient, when working with large amounts of text, such as a

project with an LCD display, to setup an array of strings. Because strings themselves are

arrays, this is in actually an example of a two-dimensional array. In the code below, the

asterisk after the datatype char "char*" indicates that this is an array of "pointers". All array

names are actually pointers, so this is required to make an array of arrays. Pointers are one

of the more esoteric parts of C for beginners to understand, but it isn't necessary to

understand pointers in detail to use them effectively here.

String - object

//You can wrap long strings like this:
char myString[] = "This is the first line"
" this is the second line"
" etcetera";

//EXAMPLE

char* myStrings[] = {"This is string 1", "This is string 2",
"This is string 3", "This is string 4", "This is string 5",
"This is string 6"};

void setup(){
 Serial.begin(9600);
}

void loop(){
 for (int i = 0; i < 6; i++) {
 Serial.println(myStrings[i]);
 delay(500);
 }
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 216/221

More info can be found here.

An array is a collection of variables that are accessed with an index number.

Creating (Declaring) an Array: All of the methods below are valid ways to create (declare)

an array.

You can declare an array without initializing it as in myInts.

In myPins we declare an array without explicitly choosing a size. The compiler counts the

elements and creates an array of the appropriate size. Finally you can both initialize and

size your array, as in mySensVals. Note that when declaring an array of type char, one more

element than your initialization is required, to hold the required null character.

Accessing an Array: Arrays are zero indexed, that is, referring to the array initialization

above, the first element of the array is at index 0, hence

mySensVals[0] == 2, mySensVals[1] == 4 , and so forth. It also means that in an array with

ten elements, index nine is the last element. Hence:

For this reason you should be careful in accessing arrays. Accessing past the end of an

array (using an index number greater than your declared array size - 1) is reading from

memory that is in use for other purposes. Reading from these locations is probably not

going to do much except yield invalid data. Writing to random memory locations is

definitely a bad idea and can often lead to unhappy results such as crashes or program

array

int myInts[6];
int myPins[] = {2, 4, 8, 3, 6};
int mySensVals[6] = {2, 4, -8, 3, 2};
char message[6] = "hello";

int myArray[10] = {9,3,2,4,3,2,7,8,9,11};
// myArray[9] contains the value 11
// myArray[10] is invalid and contains random information (other memory
address)

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 217/221

malfunction. This can also be a difficult bug to track down. Unlike BASIC or JAVA, the C

compiler does no checking to see if array access is within legal bounds of the array size

that you have declared.

To assign a value to an array: mySensVals[0] = 10;

To retrieve a value from an array: x = mySensVals[4];

Arrays and FOR Loops: Arrays are often manipulated inside for loops, where the loop

counter is used as the index for each array element. To print the elements of an array over

the serial port, you could do something like the following code example. Take special note

to a MACRO called arraySize() which is used to determine the number of elements in

myPins . In this case, arraySize() returns 5, which causes our for loop to terminate after 5

iterations. Also note that arraySize() will not return the correct answer if passed a pointer

to an array.

The C standard library and other Linux libraries are available on the Raspberry Pi. See this

description of the standard library.

For advanced use cases, those functions are available for use in addition to the functions

outlined above.

When you are using the Particle Device Cloud to compile your .ino source code, a

preprocessor comes in to modify the code into C++ requirements before producing the

binary file used to flash onto your devices.

Other Functions

Preprocessor

int myPins[] = {2, 4, 8, 3, 6};
for (int i = 0; i < arraySize(myPins); i++) {
 Serial.println(myPins[i]);
}

https://en.wikipedia.org/wiki/C_standard_library

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 218/221

// EXAMPLE
/* This is my awesome app! */
#include "TinyGPS++.h"

TinyGPSPlus gps;
enum State { GPS_START, GPS_STOP };

void updateState(State st); // You must add this prototype

void setup() {
 updateState(GPS_START);
}

void updateState(State st) {
 // ...
}

void loop() {
 displayPosition(gps);
}

void displayPosition(TinyGPSPlus &gps) {
 // ...
}

// AFTER PREPROCESSOR
#include "Particle.h" // <-- added by preprocessor
/* This is my awesome app! */
#include "TinyGPS++.h"

void setup(); // <-- added by preprocessor
void loop(); // <-- added by preprocessor
void displayPosition(TinyGPSPlus &gps); // <-- added by preprocessor

TinyGPSPlus gps;
enum State { GPS_START, GPS_STOP };

void updateState(State st); // You must add this prototype

void setup() {
 updateState(GPS_START);
}

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 219/221

The preprocessor automatically adds the line #include "Particle.h" to the top of the file,

unless your file already includes "Particle.h", "Arduino.h" or "application.h".

The preprocessor adds prototypes for your functions so your code can call functions

declared later in the source code. The function prototypes are added at the top of the file,

below #include statements.

If you define custom classes, structs or enums in your code, the preprocessor will not add

prototypes for functions with those custom types as arguments. This is to avoid putting the

prototype before the type definition. This doesn't apply to functions with types defined in

libraries. Those functions will get a prototype.

If you need to include another file or define constants before Particle.h gets included,

define PARTICLE_NO_ARDUINO_COMPATIBILITY to 1 to disable Arduino compatibility macros,

be sure to include Particle.h manually in the right place.

If you are getting unexpected errors when compiling valid code, it could be the

preprocessor causing issues in your code. You can disable the preprocessor by adding this

pragma line. Be sure to add #include "Particle.h" and the function prototypes to your

code.

void updateState(State st) {
 // ...
}

void loop() {
 displayPosition(gps);
}

void displayPosition(TinyGPSPlus &gps) {
 // ...
}

#pragma PARTICLE_NO_PREPROCESSOR
//
#pragma SPARK_NO_PREPROCESSOR

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 220/221

Particle Device OS firmware is open source and stored here on GitHub.

New versions are published here on GitHub as they are created, tested and deployed.

The process in place for releasing all Device OS versions as prerelease or default release

versions can be found here on GitHub.

Please go to GitHub to read the Changelog for your desired firmware version (Click a

version below).

Firmware Version

v1.4.x default releases v1.4.0 v1.4.1 v1.4.2 v1.4.3 v1.4.4 - -

v1.4.x prereleases v1.4.0-rc.1 v1.4.1-rc.1 - - - - -

v1.3.x default releases v1.3.1 - - - - - -

v1.3.x prereleases v1.3.0-rc.1 v1.3.1-rc.1 - - - - -

v1.2.x default releases v1.2.1 - - - - - -

v1.2.x prereleases v1.2.0-beta.1 v1.2.0-rc.1 v1.2.1-rc.1 v1.2.1-rc.2 v1.2.1-rc.3 - -

v1.1.x default releases v1.1.0 v1.1.1 - - - - -

v1.1.x prereleases v1.1.0-rc.1 v1.1.0-rc.2 v1.1.1-rc.1 - - - -

v1.0.x default releases v1.0.0 v1.0.1 - - - - -

v1.0.x prereleases v1.0.1-rc.1 - - - - - -

v0.8.x-rc.x prereleases v0.8.0-rc.10 v0.8.0-rc.11 v0.8.0-rc.12 v0.8.0-rc.14 - - -

v0.8.x-rc.x prereleases v0.8.0-rc.1 v0.8.0-rc.2 v0.8.0-rc.3 v0.8.0-rc.4 v0.8.0-rc.7 v0.8.0-rc.8 v0.8.0-rc.9

v0.7.x default releases v0.7.0 - - - - - -

v0.7.x-rc.x prereleases v0.7.0-rc.1 v0.7.0-rc.2 v0.7.0-rc.3 v0.7.0-rc.4 v0.7.0-rc.5 v0.7.0-rc.6 v0.7.0-rc.7

v0.6.x default releases v0.6.0 v0.6.1 v0.6.2 v0.6.3 v0.6.4 - -

v0.6.x-rc.x prereleases v0.6.2-rc.1 v0.6.2-rc.2 - - - - -

- v0.6.0-rc.1 v0.6.0-rc.2 v0.6.1-rc.1 v0.6.1-rc.2 - - -

v0.5.x default releases v0.5.0 v0.5.1 v0.5.2 v0.5.3 v0.5.4 v0.5.5 -

v0.5.x-rc.x prereleases v0.5.3-rc.1 v0.5.3-rc.2 v0.5.3-rc.3 - - - -

Device OS Versions

New version release process

GitHub Release Notes

https://github.com/particle-iot/device-os
https://github.com/particle-iot/device-os/releases
https://github.com/particle-iot/device-os/wiki/Firmware-Release-Process
https://github.com/particle-iot/device-os/releases/tag/v1.4.0
https://github.com/particle-iot/device-os/releases/tag/v1.4.1
https://github.com/particle-iot/device-os/releases/tag/v1.4.2
https://github.com/particle-iot/device-os/releases/tag/v1.4.3
https://github.com/particle-iot/device-os/releases/tag/v1.4.4
https://github.com/particle-iot/device-os/releases/tag/v1.4.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.4.1-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.3.1
https://github.com/particle-iot/device-os/releases/tag/v1.3.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.3.1-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.2.1
https://github.com/particle-iot/device-os/releases/tag/v1.2.0-beta.1
https://github.com/particle-iot/device-os/releases/tag/v1.2.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.2.1-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.2.1-rc.2
https://github.com/particle-iot/device-os/releases/tag/v1.2.1-rc.3
https://github.com/particle-iot/device-os/releases/tag/v1.1.0
https://github.com/particle-iot/device-os/releases/tag/v1.1.1
https://github.com/particle-iot/device-os/releases/tag/v1.1.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.1.0-rc.2
https://github.com/particle-iot/device-os/releases/tag/v1.1.1-rc.1
https://github.com/particle-iot/device-os/releases/tag/v1.0.0
https://github.com/particle-iot/device-os/releases/tag/v1.0.1
https://github.com/particle-iot/device-os/releases/tag/v1.0.1-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.10
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.11
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.12
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.14
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.2
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.3
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.4
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.7
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.8
https://github.com/particle-iot/device-os/releases/tag/v0.8.0-rc.9
https://github.com/particle-iot/device-os/releases/tag/v0.7.0
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.2
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.3
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.4
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.5
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.6
https://github.com/particle-iot/device-os/releases/tag/v0.7.0-rc.7
https://github.com/particle-iot/device-os/releases/tag/v0.6.0
https://github.com/particle-iot/device-os/releases/tag/v0.6.1
https://github.com/particle-iot/device-os/releases/tag/v0.6.2
https://github.com/particle-iot/device-os/releases/tag/v0.6.3
https://github.com/particle-iot/device-os/releases/tag/v0.6.4
https://github.com/particle-iot/device-os/releases/tag/v0.6.2-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.6.2-rc.2
https://github.com/particle-iot/device-os/releases/tag/v0.6.0-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.6.0-rc.2
https://github.com/particle-iot/device-os/releases/tag/v0.6.1-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.6.1-rc.2
https://github.com/particle-iot/device-os/releases/tag/v0.5.0
https://github.com/particle-iot/device-os/releases/tag/v0.5.1
https://github.com/particle-iot/device-os/releases/tag/v0.5.2
https://github.com/particle-iot/device-os/releases/tag/v0.5.3
https://github.com/particle-iot/device-os/releases/tag/v0.5.4
https://github.com/particle-iot/device-os/releases/tag/v0.5.5
https://github.com/particle-iot/device-os/releases/tag/v0.5.3-rc.1
https://github.com/particle-iot/device-os/releases/tag/v0.5.3-rc.2
https://github.com/particle-iot/device-os/releases/tag/v0.5.3-rc.3

1/29/2020 Particle Reference Documentation | Device OS API

https://docs.particle.io/reference/device-os/firmware/raspberry-pi/ 221/221

If you don't see any notes below the table or if they are the wrong version, please select

your Firmware Version in the table below to reload the page with the correct notes.

Otherwise, you must have come here from a firmware release page on GitHub and your

version's notes will be found below the table :)

Firmware Version

v1.4.x default releases v1.4.0 v1.4.1 v1.4.2 v1.4.3 v1.4.4 - -

v1.4.x prereleases v1.4.0-rc.1 v1.4.1-rc.1 - - - -

v1.3.x default releases v1.3.1 - - - - - -

v1.3.x prereleases v1.3.0-rc.1 v1.3.1-rc.1 - - - -

v1.2.x default releases v1.2.1 - - - - - -

v1.2.x prereleases v1.2.0-beta.1 v1.2.0-rc.1 v1.2.1-rc.1 v1.2.1-rc.2 v1.2.1-rc.3 -

v1.1.x default releases v1.1.0 v1.1.1 - - - - -

v1.0.x prereleases v1.0.1-rc.1 - - - - - -

v1.1.x prereleases v1.1.0-rc.1 v1.1.0-rc.2 v1.1.1-rc.1 - -

v1.0.x default releases v1.0.0 v1.0.1 - - - - -

v1.0.x prereleases v1.0.1-rc.1 - - - - - -

v0.8.x-rc.x prereleases v0.8.0-rc.10 v0.8.0-rc.11 v0.8.0-rc.12 v0.8.0-rc.14 - - -

v0.8.x-rc.x prereleases v0.8.0-rc.1 v0.8.0-rc.2 v0.8.0-rc.3 v0.8.0-rc.4 v0.8.0-rc.7 v0.8.0-rc.8 v0.8.0-rc.9

v0.7.x default releases v0.7.0 - - - - - -

v0.7.x-rc.x prereleases v0.7.0-rc.1 v0.7.0-rc.2 v0.7.0-rc.3 v0.7.0-rc.4 v0.7.0-rc.5 v0.7.0-rc.6 v0.7.0-rc.7

v0.6.x default releases v0.6.0 v0.6.1 v0.6.2 v0.6.3 v0.6.4 - -

v0.6.x-rc.x prereleases v0.6.2-rc.1 v0.6.2-rc.2 - - - - -

- v0.6.0-rc.1 v0.6.0-rc.2 v0.6.1-rc.1 v0.6.1-rc.2 - - -

v0.5.x default releases v0.5.0 v0.5.1 v0.5.2 v0.5.3 v0.5.4 v0.5.5 -

v0.5.x-rc.x prereleases v0.5.3-rc.1 v0.5.3-rc.2 v0.5.3-rc.3 - - - -

Programming and Debugging Notes

https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.0&cli_ver=1.47.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.1&cli_ver=1.48.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.2&cli_ver=1.49.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.3&cli_ver=1.52.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.4&cli_ver=1.53.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.0-rc.1&cli_ver=1.43.3&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.4.1-rc.1&cli_ver=1.47.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.3.1&cli_ver=1.46.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.3.0-rc.1&cli_ver=1.41.2&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.3.1-rc.1&cli_ver=1.43.3&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.2.1&cli_ver=1.43.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.2.0-beta.1&cli_ver=1.40.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.2.0-rc.1&cli_ver=1.41.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.2.1-rc.1&cli_ver=1.41.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.2.1-rc.2&cli_ver=1.41.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.2.1-rc.3&cli_ver=1.41.2&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.1.0&cli_ver=1.41.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.1.1&cli_ver=1.42.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.0.1-rc.1&cli_ver=1.38.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.1.0-rc.1&cli_ver=1.40.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.1.0-rc.2&cli_ver=1.40.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.1.1-rc.1&cli_ver=1.41.2&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.0.0&cli_ver=1.37.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.0.1&cli_ver=1.39.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=1.0.1-rc.1&cli_ver=1.38.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.10&cli_ver=1.33.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.11&cli_ver=1.35.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.12&cli_ver=1.36.3&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.14&cli_ver=1.36.3&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.1&cli_ver=1.29.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.2&cli_ver=1.29.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.3&cli_ver=1.29.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.4&cli_ver=1.29.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.7&cli_ver=1.29.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.8&cli_ver=1.32.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.8.0-rc.9&cli_ver=1.32.4&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0&cli_ver=1.29.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.1&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.2&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.3&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.4&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.5&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.6&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.7.0-rc.7&cli_ver=1.23.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.0&cli_ver=1.18.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.1&cli_ver=1.20.1&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.2&cli_ver=1.22.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.3&cli_ver=1.25.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.4&cli_ver=1.26.2&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.2-rc.1&cli_ver=1.21.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.2-rc.2&cli_ver=1.21.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.0-rc.1&cli_ver=1.17.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.0-rc.2&cli_ver=1.17.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.1-rc.1&cli_ver=1.18.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.6.1-rc.2&cli_ver=1.18.0&electron_parts=3#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.0&cli_ver=1.12.0&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.1&cli_ver=1.14.2&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.2&cli_ver=1.15.0&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.3&cli_ver=1.17.0&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.4&cli_ver=1.24.1&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.5&cli_ver=1.24.1&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.3-rc.1&cli_ver=1.15.0&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.3-rc.2&cli_ver=1.16.0&electron_parts=2#programming-and-debugging-notes
https://docs.particle.io/reference/device-os/firmware/photon/?fw_ver=0.5.3-rc.3&cli_ver=1.16.0&electron_parts=2#programming-and-debugging-notes

