7/6/2020 Real-time Alerting | Tutorials | Particle

REAL-TIME ALERTING WITH RULES ENGINE

The Rules Engine makes it easy to trigger alerts in the cloud when important events happen in
the physical world. This is a very common component of almost any loT product.

In this tutorial, we'll start by creating a device that measures water depth. Then, using the
Rules Engine, when the water level gets too high, we can:

o Alert by SMS using Twilio
e Alert by email
e Alert by Slack

Using the Rules Engine makes it easy to customize the message you send and the recipients,
and switch between a variety of notification methods. You can even combine them.

Tutorial Hardware

For the hardware side of this project we're using a eTape Liquid Level Sensor and a Particle

Photon. The device firmware reads this sensor continuously and:

e Publishes an alert notification immediately if the level exceeds 2"

e Every minute, checks to see if the level changed, and if so, publishes the new level.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 1/35

https://www.adafruit.com/product/3827

7/6/2020 Real-time Alerting | Tutorials | Particle

However, for ease of testing with ordinary parts you probably have on hand, you can simulate
this using a potentiometer.

Connect the outer legs to 3V3 and GND, and the center tap to AO.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 2/35

7/6/2020 Real-time Alerting | Tutorials | Particle

- o = -

Ry |

The device firmware is included at the end of this tutorial.

Setting up Authentication

The Rules Engine will need access to your Particle account in order to interact with your
devices.

e Log into the console.
e Select Authentication (1)

¢ Click New Client (2)

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 3/35

https://console.particle.io/

7/6/2020 Real-time Alerting | Tutorials | Particle

[Docs (& Contact Sales

Authentication

Client ID Type Scope Redirect URI

2 =91

e Inthe New OAuth Client window, select Two-Legged Auth (Server)

e Enter a name. | called mine Rules Engine.

& Support -

8 p + NEW CLIENT
_—

New OAuth Client

Your Particle project will likely involve interaction with the Particle cloud via a
web or mobile application. You can use an OAuth Ciient ID and Client Secret
to securely communicate with the Particle cloud from an application or a
server (Learn more about clients).

Particle has created sensible defaults for client configuration based on what
kind of application you will be building. Visit the Product Creator Guide to
learn more about which client type is right for you.

CLIENT TYPE
© Two-Legged Auth (Server)) Simple Auth (Web App)
() Simple Auth (Mobile App)) Custom

MName

RulesEngine

GET CLIENT ID AND SECRET

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

4/35

7/6/2020 Real-time Alerting | Tutorials | Particle

e Copy the Client ID (rulesengine-2316 in my example)

* Copy the Client Secret. Note that this should be kept secret, and this is the only chance

you have to copy it. Once you close this window you can't get the secret back!

@ Client Created

You're all set! The client credentials below can now be used to
authenticate your app with the Particle cloud. For instructions on
adding your credentials to your app, Visit the Product Creator Guide.

For security purposes, this is the only time your client secret will be
shown. Please copy it for your records, and store it in a safe place.

CLIENT ID

rulesengine-2316

CLIENT SECRET

mm = = mmm m =m =N (&N

I'VE COPIED MY SECRET

Setting up the flow

We'll be using a subscribe node. This allows the Rules Engine to listen for events posted by
devices in your account. The firmware above publishes events periodically with the level
(LevelValue), when an alarm occurs (LevelAlarm) and when it stops (LevelClear).

This is the flow we'll be creating in this section:

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 5/35

7/6/2020 Real-time Alerting | Tutorials | Particle

% ot SR s et]

* Inthe Rules Engine, from the Particle section of the palette, drag a subscribe node to the

flow. You'll notice it has an red triangle, so it needs to be configured.

Rules Engine bet

Q 4 LEVEL DEBUG @ @
- PARTICLE

=

o

~ FUNCTION

i

* Click the pencil icon to Add Particle config.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 6/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Edit subscribe node

DELETE CANCEL m

~ NODE PROPERTIES

W MName

& Auth Add new particle-config... |
® Event

@ Device

@ Scope © User) Product

e Enter your Client ID and Client Secret from the console into the Particle config window.

Edit subscribe node = Add new particle-config config node

e

1. Create a Particle OAuth client
Follow the instructions from the authentication guide.

Make sure that you choose "Two-Legged Auth (Server)” as the client type to ensure sufficient

permissions.

2. Copy the OAuth client credentials here:

[& ClientID rulesengine-2316

& Client Secret | ss

e Fill in the rest of the subscribe node configuration.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 7/35

7/6/2020 Real-time Alerting | Tutorials | Particle

¢ Set Name and Event to "LevelAlarm".
¢ Leave the Device field blank.

e The Scope should be be left the default of User.

Edit subscribe node

DELETE CANCEL m

~ NODE PROPERTIES

% Name LevelAlarm

& Auth rulesengine-2316 R 4
® Event ‘ LevelAlarm|

@ Device

@ Scope O User () Product

e From the Output section of the palette, drag a debug node next to your subscribe node.

e Then click on one of the handles and drag to the other to connect them.

Ck irvini R vt =[]

e Click the Deploy button to start your flows running.
* View the Debug tab on the right hand side of the Rules Engine.

¢ Cause an alarm condition in the Photon sensor.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 8/35

7/6/2020 Real-time Alerting | Tutorials | Particle

INFO DEBUG DASHB *'| | CONFIC >
T all nodes i

BA1/20NE, B:05:37 AN node: 22chcifc.B2d0aB
msg.payload : string[8]

"2.920182"

e If you didn't set up the circuit, you can simulate it using the Particle CLI:

particle publish "LevelAlarm" "3.0" --private

‘ INFO ‘nsnun ‘ DASHB X | CONFIC %

| T all nodes o

B/1/2018, B:05:37 AM node: 22c6c7fc.B2d0a8
msg.payload : string[8]

"2.929182"

B/A1/2018, 8:31:10 AM node: 22cbc7fo.B2d0a8
msg.payload : string[3]

"y, "

The debug log isn't very interesting or all that useful, so lets send an SMS.

Configure Twilio

This part of the example uses Twilio. There are some more examples below if you want to use

other services.
You will need:

1. An active Twilio account

2. A project with Programmable SMS enabled

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

9/35

7/6/2020 Real-time Alerting | Tutorials | Particle

3. A Twilio phone number to send SMS from

4. Your account's SID and Auth token

This can all be configured quite easily using the Twilio Console.

e From the Twilio console, select Programmable Messaging and Dashboard (1). Then click
Show API Credentials (2) in the upper right. This is where you can get your Account SID
and Auth Token. You'll need these later.

TestNotify trial v Messaging / UPGRADE o £ ? 6%

Fas Show AP| Credentials ~
' Programmable

Messaging Programmable SMS Dashboard 2
= -1

Dashboard
To access the Twilio APl you will need your Account SID and Auth Token, which are shown below.

@ Learn & Build
ACCOUNT SID AC638

SMS

AUTHTOKEN @ssssssssssssssssssnsasnsns

Tools

Logs Continue Getting Started

Insights
Add-ons)
Beta Messages Last 30 Days v Errors & Warnings

Usage :

O

You have no errors or warnings

Settings

1 + View all errors and warnings

e Back in the Rules Engine, click the "hamburger icon" in the upper right of the Rules
Engine window (1) then Settings (2).

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 10/35

https://www.twilio.com/console

7/6/2020 Real-time Alerting | Tutorials | Particle

DEFLOY ~

+ View

Import

Search flows

Flows

Subflows

2

Settings /

Click Palette (1).
Then Install (2).

Type twilio in the search box (3).

Install the item node-red-node-twilio (4).

https://docs particle.io/tutorials/iot-rules-engine/real-time-alerting/ 11/35

Real-time Alerting | Tutorials | Particle

7/6/2020
User Settings
CLOSE
" 4
- NODES CINSTALL |
sort:| a-z | recent | &
KEYBOARD > (3]
Q twilio 3/1553
PALETTE _
) node-red-bluemix-nodes &
\ A collection of extra Mode-RED nodes for IBM Bluemix.
ﬂ % 1.7.70 P 1year, 6 months ago install
&) node-red-contrib-sms-twilio &
A Mode-RED node to send bulk SMS messages via the Twilio service.
» 002 1 year, 11 months ago install
&) node-red-node-twilic &
A Mode-RED node to send SMS messages via the Twilio service.
% 010 4 months ago & =

e There will be a new section mobile in the palette with twilio in it.

e Drag the twilio node to your flow.

% oo S ey smiot = [
i ©

v MOBILE
8 twilio ®

~ AWS

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 12/35

7/6/2020 Real-time Alerting | Tutorials | Particle
e Double click to configure your Twilio node.
e Click the pencil icon to create a new configuration.
e Enter your Account SID, Twilio Phone Number, and Auth Token.
e The name is just for display purposes and you can set it to anything.

e Click Add.

Edit twilio out node > Add new twilio-api config node

o o

Account SID ACEH38!

2 From +1802
E TEI ken addddddddddddddddddddddbdddbadid
% Name TestNotify

e Then configure the twilio out node.
e Make sure Output is SMS

e Enter the phone number in the To field. Note that for US phone numbers, its "+1" then
the phone number with area code. For other countries, the "1" would be replaced by the

country code.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 13/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Edit twilio out node

DELETE CANCEL m

~ NODE PROPERTIES

& Twilio TestNotify s &
i= Output SM5 =

EATo +1802°

% Name Notify Rick|

e Now drag a connection from the LevelAlarm to the twilio node Notify Rick.

oo~ M oo [

e Deploy your flow.

e Trigger an alarm condition and you should receive an SMS!

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 14/35

Real-time Alerting | Tutorials | Particle

7/6/2020

Making the output more readable

There are two problems we want to fix first.

1. Limit the number of SMS messages to at most one every 5 minutes.

2. Make the output a bit more readable than just the number of inches.

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules | P

This is the flow we'll be building:

[)

® msg.payload

LevelAlarm T

X

® Notify Rick @)

] f Make Readable Message wu

®() RateLimit ®

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 15/35

7/6/2020 Real-time Alerting | Tutorials | Particle

* In the function portion of the palette, select delay.

~ FUNCTION

[template ®
detey

CIN ST Delays each message passing through the
node or limits the rate at which they can pass.

e Drag it to your flow and double click to configure it.

e Click on Action and change it from Delay to Rate Limit

e Select All messages
e Select 1 msg(s) per 5 Minutes

e Select drop intermediate messages

e Set the name to Rate limit (or something else of your choosing).

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

16/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Edit delay node

N oon:

~ NODE PROPERTIES

= Action Rate Limit

L L

L L

All messages

@ Rate 1 * 'msg(s) per 5 | Minutes

-

AW

drop intermediate messages

¥ Mame Rate Limit

* Find function in the palette in the Function section. Note that this is not the function in

the Particle section.

e Dragitinto your flow.

5 ritor S 1 ot < [
S ot ©

e Double click the function node to configure it.
e Setthe name. | made mine Make Readable Message.
¢ |nthe function box, set the function to:

msg.payload = "Level alert! Level is " + msg.payload;

return msg;

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 17/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Edit function node

DELETE CANCEL m

~ NODE PROPERTIES

¥ MName

Make Readable Message & ~

4 Function

1 msg.payload = "Level alert! Level is " + msg.payload;
2 return msg;|

e Connect your nodes together by dragging between the handles.

S osvion =]

@‘Eﬂﬂﬁmﬁf lf Make Readable Message =

e Deploy your flow.
e Trigger an alert level

* And you should receive a much more readable SMS message!

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 18/35

7/6/2020 Real-time Alerting | Tutorials | Particle

w!l AT&T Wi-Fi = 10:01 AM + 3 98% [

< 0 ®

+1 (802) I

Text Message
Today 2:05 AM

Sent from your Twilio trial account -
testing!

Sent from your Twilio trial account -
4.025641

Sent from your Twilio trial account -
Level alert! Level is 3.211233

Sending Email

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or
you can create the flow from scratch with the steps below.

Copy Rules | P

This is the flow we'll be building:

prTe - e

O | Rate Limit el Make Readable Message }—(

In the social group of the palette is the email (out) node that you can use for email
notifications.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 19/35

7/6/2020 Real-time Alerting | Tutorials | Particle
* Drag the email (out) icon to your flow.
e Double click to configure it.
* To is the email address you're sending to

e Server is the SMTP email server to use. The default smtp.gmail.com is appropriate for

gmail.
e Port 465 and Use secure connection are appropriate for gmail.
e Userid is your username (just the username, not the @gmail.com part)

e Password may be your password, but if you have Google two-factor authentication

enabled, it's an app-specific password instead.

Edit email node

DELETE CANCEL m

~ NODE PROPERTIES

= To rick ‘
@ Server smtp.gmail.com

¢ Port 465 Use secure connection.
& Userid

@ Password ssssssss

% Name Mail Rick

Drag the handles to connect the email node to your flow.

Deploy your flow

e Trigger an alert.

And you should receive an email!

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 20/35

https://support.google.com/accounts/answer/185833?hl=en

7/6/2020 Real-time Alerting | Tutorials | Particle

[@gmail.com
Message from Mode-RED
To: rickl

Lavel alert! Level is 2.677656

Posting to Slack

It's easy to post your alert in Slack using a slack incoming webhook.
Configure Slack

e Atthe link above, click the green button: Create your slack app.

Create a Slack App X

. Interested in the next generation of apps?
We're improving app development and distribution. Join the API
‘ Preview period for workspace tokens and the Permissions API.

App Name

RulesEngineTest|

Don't worry; yvou'll be able to change this later.

Development Slack Workspace

*— Particle -

Your app belongs to this workspace—leaving this workspace will remove your

ability to manage this app. Unfortunately, this can't be changed later.

By creating a Web API Application, you agree to the Slack API Terms of

Service.
Cancel Create App

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 21/35

https://api.slack.com/incoming-webhooks

7/6/2020 Real-time Alerting | Tutorials | Particle

e Click Incoming webhooks.

@ RulesEngineTest v Basic Information

Settings

Basic Information

Collaborators

Building Apps for Slack

Create an app that's just for your workspace (or build one that can be used by any workspace) by

Install App
Manage Distribution

Features

Incoming Webhooks
Interactive Components
Slash Commands
OAuth & Permissions
Event Subscriptions

Bot Users

User ID Translation

Slack w
Help
Contact
Policies
Our Blog

e Click the slider (1) to Activate Incoming Webhooks.

following the steps below.

Add features and functionality

v

Choose and configure the tools you'll need to create your app (or review all our documentation).

Incoming Webhooks

Post messages from external sources into
Slack.

Slash Commands

Allow users to perform app actions by typing
commands in Slack.

Bots
Add a bot to allow users to exchange
messages with your app.

* The click Add New Webhook to Workspace (2).

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

Interactive Components
Add buttons to your app’s messages, and
create an interactive experience for users.

Event Subscriptions
Make it easy for your app to respond to
activity in Slack.

Permissions
Configure permissions to allow your app to
interact with the Slack APL.

22/35

7/6/2020 Real-time Alerting | Tutorials | Particle

@ ruestngineTest — + [ncoming Webhooks

Settings fl']
Basic Information Activate Incoming Webhooks ' m
Collaborators Incoming webhooks are a simple way to post messages from external sources into Slack. They
Install App make use of normal HTTP requests with a JSON payload, which includes the message and a few
Manage Distribution other optional details. You can include message attachments to display richly-formatted
messages.
Features
Each time your app is installed, a new Webhook URL will be generated.
Incoming Webhooks

Interactive Components If you deactivate incoming webhooks, new Webhook URLs will not be generated when your app
is installed to your team. If you'd like to remove access to existing Webhook URLs, you will need
to Revoke All OAuth Tokens.

Slash Commands
OAuth & Permissions

Event Subscriptions

Bot Users
User ID Translation Webhook URLs for Your Workspace
To dispatch messages with your webhook URL, send your message in JSON as the body of an
Slack ¥ application/json POST request.
Help i . .
- Add this webhook to your workspace below to activate this curl example.
Policies Sample curl request to post to a channel:
Our Blog

curl -X POST -H 'Content-type: application/json' --data '{"text":"Hello, World!"}'
YOUR_WEBHOOK_URL_HERE

Webhook URL Channel Added By

No webhooks have been added yet.

2

Add New Webhook to Workspace |

e Confirm your identify and select the channel to post to. | just posted to slackbot for

testing, but you would normally select a real channel.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

23/35

7/6/2020 Real-time Alerting | Tutorials | Particle
@ s >
| S X
vy 0
On Particle, RulesEngineTest would like to:

Confirm your identity on Particle

Post to Slackbot, which is private to you v ‘

e Copy the Slack URL, you'll need it later.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 24/35

7/6/2020 Real-time Alerting | Tutorials | Particle

@ ruestngineest — ~ Incoming Webhooks

Settings
Basic Information Activate Incoming Webhooks [on @)
Collaborators Incoming webhooks are a simple way to post messages from external sources into Slack. They
Install App make use of normal HTTP requests with a JSON payload, which includes the message and a few
Manage Distribution other optional details. You can include message attachments to display richly-formatted
messages.
Features
Each time your app is installed, a new Webhook URL will be generated.
Incoming Webhooks
Interactive Components If you deactivate incoming webhooks, new Webhook URLs will not be generated when your app

is installed to your team. If you'd like to remove access to existing Webhook URLs, you will need
to Revoke All OAuth Tokens.

Slash Commands
OAuth & Permissions

Event Subscriptions

Bot Users
User ID Translation Webhook URLs for Your Workspace
To dispatch messages with your webhook URL, send your message in JSON as the body of an
Slack ¥ application/json POST request.
Help i 3 X
e Add this webhook to your workspace below to activate this curl example.
Policies Sample curl request to post to a channel:
Our Blog
curl -X POST -H 'Content-type: application/json' --data '{"text":"Hello, World!"}"
https://hooks.slack.com/services/TO ! /K ' Copy
Webhook URL Channel Added By
|. https:#hooks.slack.com/services/TO! I Copy slackbot Aug 2, 2018 @

Add New Webhook to Workspace

Add Slack to the Rules Engine

e Back in the Rules Engine, click the "hamburger icon" in the upper right of the Rules
Engine window (1) then Settings (2).

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

25/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Search flows

Flows

Subflows

2

Settings /

Click Palette (1).
Then **Install (2).

Type slack in the search box (3).

Install the item node-red-contrib-slack (4).

https://docs particle.io/tutorials/iot-rules-engine/real-time-alerting/ 26/35

7/6/2020

User Settings

VIEW

KEYBOARD

PALETTE

Building the slack flow

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

Real-time Alerting | Tutorials | Particle

2

NODES INSTALL ~

.8

Qslack

& node-red-contrib-loose @
Node Red Slack client
% 002 [2pears ?months ago

& node-red-contrib-slack @
A node-red module to post to Slack.com

W 0.1.2) 1year 7 months ago

& node-red-contrib-slack-files @
A node-red module to post to Slack.com

W 0.1.2) 1year, 6 months ago

@ node-red-contrib-slack-profiler &
A node-red module to post to Slack.com
% 0.1.2) 10months ago

& node-red-contrib-slackattach

sort:

az

recent | | &

911553

install

| insll

install

install

A node-red module to post to Slack.com from Adrian Lansdown with Attachments for

Incoming message
% 072) 1year, 9months ago

& node-red-contrib-slackbot &
NodeRED node to easily create a chatbot in Slack
% 1.03) 2years 8 monthsago

@ node-red-contrib-slackbot-tjun &
NodeRED node to easily create a chatbot in Slack
% 1.04) 7menthsago

& node-red-contrib-slacker &
Node RED Slack integration built on top of botkit from howdy.ai
% 100 # 3menthsago

& node-red-contrib-slackerattach &
Node RED Slack integration built on top of botkit from howdy.ai
% 107 E 1year 9months ago

you can create the flow from scratch with the steps below.

Copy Rules | »

This is the flow we'll be building:

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

install

install

install

install

install

27/35

7/6/2020 Real-time Alerting | Tutorials | Particle

e — AR~ — S

i £ []

e This flow reuses the Level Alarm and Make Readable Messages from the previous

tutorial. You can either reuse that flow, or copy and paste them into a new flow.
e From the Social section of the palette, drag a slack (out) node to your flow.
e Double click to configure it.
e Setthe WebHook URL to the webhook URL you got from Slack.

¢ Setthe other fields as desired.

Edit slack node

DELETE CANCEL m

~ NODE PROPERTIES

¥ WebHook

URL https://hooks.slack.com/services/T02:

& Posting
UserMame

@ Emoji lcon

32 Channel

% MName Post To Slack

e Connect up the nodes in your flow.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 28/35

7/6/2020 Real-time Alerting | Tutorials | Particle

e | added a debug node, but that's not required.
e Deploy.

* Cause an alarm condition, and you should see a message in Slack!

'F RulesEngineTest AFF 508 Am
Level alert! Level is 2.726496

Posting to Slack when a device stops reporting

This tutorial expands on the previous tutorial.

However, the technique for reporting when a device stops responding could easily be
changed to email, Twilio SMS, or any number of other notification methods.

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules | »

This is the flow we'll be creating in this section:

Level Testd [

23

8 Post To Slack #

. f Make Readable Message =

8 msg.payload

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 29/35

7/6/2020 Real-time Alerting | Tutorials | Particle

e From the Particle section of the palette, drag a subscribe node to a new flow.
e Setthe Name to Level Test4 (or anything else).

e Setthe Auth to the Particle authorization you created earlier in the Real-time Alerting

tutorial.
» Setthe Event to Level. This will trigger on any of the level reporting events.

* Set the Device to the name of the device that's reporting. In all of the other examples, we

left that field blank, but we're interested in when a specific device stops reporting here.

e Leave the Scope as User.

Edit subscribe node

DELETE CAMNCEL m

~ NODE PROPERTIES

% Name Level Testd

& Auth rulesengine-2316 IR 4
® Event Level

¥ Device testd

@ Scope © User) Product

e From the Function section of the palette, drag trigger to your flow.
e Double-click to configure it.

e Set Send to nothing.

e Set then to wait for 125 seconds.

* Make sure extend delay if new message arrive is checked.

e Set Handling to all messages

* Setthe Name to trigger if no response for 2 minutes (or anything else).

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 30/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Edit trigger node

DELETE CANCEL m

~ NODE PROPERTIES

Send ~ nothing |

then wait for

L3

125 | Seconds

L3

extend delay if new message arrives

then send ~ the latest msg object

Resetthe trigger if: « msg.resetis set

+ msg.payload equals

Handling all messages

4k

W Name Trigger if no response for 2 minutes

e From the Function section of the palette, drag function to your flow. Note that this is not

the function in the Particle section of the palette.
e Double-click to configure it.
e Setthe Name to Make Readable Message (or anything else).

¢ Set the Function to:

msg.payload = 'No response from ' + msg.device_id + ', last level was +
msg.payload + ' at ' + msg.published_at;
return msg;

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 31/35

7/6/2020 Real-time Alerting | Tutorials | Particle

Edit function node

DELETE CANCEL m

~ NODE PROPERTIES

® Name
Make Readable Message & -
Function
1 msg.payload = 'Mo response from ' + msg.device_id + ', la:

2 return msg;

e Copy and paste the Post to Slack node from the previous tutorial.
e Connect your nodes together into a flow.

e | added a debug of the payload for easier debugging.

* Deploy your flow.

¢ When an event has been received and it's in the two-minute timeout, a blue dot will
appear in the bottom left of the trigger node.

"_‘ Trigger if no response for 2 minutes &g

— —

* If you turn off the publishing device and wait 2 minutes, there should be a message in
Slack.

‘F RulesEngineTest ArF 9:13 Am
MNo response from 1eMsmmmmmmm - L D last level was
0.102564 at 2018-08-02T13:16:11.7957

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

32/35

7/6/2020

Real-time Alerting | Tutorials | Particle

e You can easily expand this to monitor more than one device by adding more subscribe

and trigger nodes. They can just feed into the existing Make Readable Message.

Device firmware

The Photon is programmed with the following code. You can also use this link to open it in the

Particle Web IDE.

#include "Particle.h"
SerialLogHandler logHandler;

// This is the pin the sensor is connected to
const int SENSOR_PIN = AO0;

// How often to poll the sensor (in milliseconds) to see if it's in alert
state
const unsigned long POLL_INTERVAL_MS = 1000;

// How often to publish the sensor (in milliseconds) if the value changes
const unsigned long PUBLISH_INTERVAL_MS = 60000;

// Used to note the last time the value was polled (value from millis())
unsigned long lastPollMs = 0;

// Used to note the last time the value was published (value from millis())
// The initial value means it will publish 3000 milliseconds after startup
unsigned long lastPublishMs = 3000 - PUBLISH_INTERVAL_MS;

// Set to true once we've alerted; flag is cleared when the level drops below
ALERT_LEVEL
bool hasAlerted = false;

// The current level (read every second) that's exposed by a Particle.variable
double currentLevel = 0.0;

// The level to alert at
double alertLevel = 2.0;

// Function to read the level in inches
double readLevellInches();

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

33/35

https://go.particle.io/shared_apps/5babb9b33242a939e300171a

7/6/2020 Real-time Alerting | Tutorials | Particle

void setup() {
Serial.begin();

// In addition to publishing the level, allow it to be retrieved as a
variable

Particle.variable("level", currentLevel);

void loop() {

if (millis() - lastPollMs >= POLL_INTERVAL_MS) {
lastPollMs = millis();

// This block is executed once per second

currentLevel = readLevelInches();
if (currentLevel >= alertLevel) {
if (!'hasAlerted) {
Particle.publish("LevelAlarm", String(currentLevel), PRIVATE);

Log.info("Level %lf published (alarm)", currentLevel);
hasAlerted = true;

}
}
else {
// Once level drops below the alert level, clear the hasAlerted
flag
if (hasAlerted) {
Particle.publish("LevelClear", String(currentLevel), PRIVATE);
Log.info("Level %lf published (alarm cleared)", currentLevel);
hasAlerted = false;
}
}
}

if (millis() - lastPublishMs >= PUBLISH_INTERVAL_MS) {
lastPublishMs = millis();

// This block is executed once per minute
double level = readLevelInches();

Particle.publish("Levelvalue", String(level), PRIVATE);
Log.info("Level %Lf published (periodic)", level);

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

34/35

7/6/2020 Real-time Alerting | Tutorials | Particle

double readLevellInches() {
//

double value = (double) analogRead(SENSOR_PIN);

// Temporary: connect potentiometer outer pins to 3V3 and GND.

A0.
// Far left = ov = 0 = 0"
// Far right = 3.3V = 4096 = 5.0"
return (value * 5.0) / 4095.0;

}

The code above uses the testing potentiometer.

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/

Center to

35/35

