
7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 1/35

The Rules Engine makes it easy to trigger alerts in the cloud when important events happen in

the physical world. This is a very common component of almost any IoT product.

In this tutorial, we'll start by creating a device that measures water depth. Then, using the

Rules Engine, when the water level gets too high, we can:

Alert by SMS using Twilio

Alert by email

Alert by Slack

Using the Rules Engine makes it easy to customize the message you send and the recipients,

and switch between a variety of notification methods. You can even combine them.

For the hardware side of this project we're using a eTape Liquid Level Sensor and a Particle

Photon. The device firmware reads this sensor continuously and:

Publishes an alert notification immediately if the level exceeds 2"

Every minute, checks to see if the level changed, and if so, publishes the new level.

REAL-TIME ALERTING WITH RULES ENGINE

Tutorial Hardware

https://www.adafruit.com/product/3827

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 2/35

However, for ease of testing with ordinary parts you probably have on hand, you can simulate

this using a potentiometer.

Connect the outer legs to 3V3 and GND, and the center tap to A0.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 3/35

The device firmware is included at the end of this tutorial.

The Rules Engine will need access to your Particle account in order to interact with your

devices.

Log into the console.

Select Authentication (1)

Click New Client (2)

Setting up Authentication

https://console.particle.io/

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 4/35

In the New OAuth Client window, select Two-Legged Auth (Server)

Enter a name. I called mine Rules Engine.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 5/35

Copy the Client ID (rulesengine-2316 in my example)

Copy the Client Secret. Note that this should be kept secret, and this is the only chance

you have to copy it. Once you close this window you can't get the secret back!

We'll be using a subscribe node. This allows the Rules Engine to listen for events posted by

devices in your account. The firmware above publishes events periodically with the level

(LevelValue), when an alarm occurs (LevelAlarm) and when it stops (LevelClear).

This is the flow we'll be creating in this section:

Setting up the flow

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 6/35

In the Rules Engine, from the Particle section of the palette, drag a subscribe node to the

flow. You'll notice it has an red triangle, so it needs to be configured.

Click the pencil icon to Add Particle config.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 7/35

Enter your Client ID and Client Secret from the console into the Particle config window.

Fill in the rest of the subscribe node configuration.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 8/35

Set Name and Event to "LevelAlarm".

Leave the Device field blank.

The Scope should be be left the default of User.

From the Output section of the palette, drag a debug node next to your subscribe node.

Then click on one of the handles and drag to the other to connect them.

Click the Deploy button to start your flows running.

View the Debug tab on the right hand side of the Rules Engine.

Cause an alarm condition in the Photon sensor.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 9/35

If you didn't set up the circuit, you can simulate it using the Particle CLI:

The debug log isn't very interesting or all that useful, so lets send an SMS.

This part of the example uses Twilio. There are some more examples below if you want to use

other services.

You will need:

1. An active Twilio account

2. A project with Programmable SMS enabled

Configure Twilio

particle publish "LevelAlarm" "3.0" --private

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 10/35

3. A Twilio phone number to send SMS from

4. Your account's SID and Auth token

This can all be configured quite easily using the Twilio Console.

From the Twilio console, select Programmable Messaging and Dashboard (1). Then click

Show API Credentials (2) in the upper right. This is where you can get your Account SID

and Auth Token. You'll need these later.

Back in the Rules Engine, click the "hamburger icon" in the upper right of the Rules

Engine window (1) then Settings (2).

https://www.twilio.com/console

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 11/35

Click Palette (1).

Then Install (2).

Type twilio in the search box (3).

Install the item node-red-node-twilio (4).

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 12/35

There will be a new section mobile in the palette with twilio in it.

Drag the twilio node to your flow.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 13/35

Double click to configure your Twilio node.

Click the pencil icon to create a new configuration.

Enter your Account SID, Twilio Phone Number, and Auth Token.

The name is just for display purposes and you can set it to anything.

Click Add.

Then configure the twilio out node.

Make sure Output is SMS

Enter the phone number in the To field. Note that for US phone numbers, its "+1" then

the phone number with area code. For other countries, the "1" would be replaced by the

country code.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 14/35

Now drag a connection from the LevelAlarm to the twilio node Notify Rick.

Deploy your flow.

Trigger an alarm condition and you should receive an SMS!

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 15/35

There are two problems we want to fix first.

1. Limit the number of SMS messages to at most one every 5 minutes.

2. Make the output a bit more readable than just the number of inches.

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

This is the flow we'll be building:

Making the output more readable

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 16/35

In the function portion of the palette, select delay.

Drag it to your flow and double click to configure it.

Click on Action and change it from Delay to Rate Limit

Select All messages

Select 1 msg(s) per 5 Minutes

Select drop intermediate messages

Set the name to Rate limit (or something else of your choosing).

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 17/35

Find function in the palette in the Function section. Note that this is not the function in

the Particle section.

Drag it into your flow.

Double click the function node to configure it.

Set the name. I made mine Make Readable Message.

In the function box, set the function to:

msg.payload = "Level alert! Level is " + msg.payload;
return msg;

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 18/35

Connect your nodes together by dragging between the handles.

Deploy your flow.

Trigger an alert level

And you should receive a much more readable SMS message!

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 19/35

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

This is the flow we'll be building:

In the social group of the palette is the email (out) node that you can use for email

notifications.

Sending Email

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 20/35

Drag the email (out) icon to your flow.

Double click to configure it.

To is the email address you're sending to

Server is the SMTP email server to use. The default smtp.gmail.com is appropriate for

gmail.

Port 465 and Use secure connection are appropriate for gmail.

Userid is your username (just the username, not the @gmail.com part)

Password may be your password, but if you have Google two-factor authentication

enabled, it's an app-specific password instead.

Drag the handles to connect the email node to your flow.

Deploy your flow

Trigger an alert.

And you should receive an email!

https://support.google.com/accounts/answer/185833?hl=en

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 21/35

It's easy to post your alert in Slack using a slack incoming webhook.

At the link above, click the green button: Create your slack app.

Posting to Slack

Configure Slack

https://api.slack.com/incoming-webhooks

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 22/35

Click Incoming webhooks.

Click the slider (1) to Activate Incoming Webhooks.

The click Add New Webhook to Workspace (2).

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 23/35

Confirm your identify and select the channel to post to. I just posted to slackbot for

testing, but you would normally select a real channel.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 24/35

Copy the Slack URL, you'll need it later.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 25/35

Back in the Rules Engine, click the "hamburger icon" in the upper right of the Rules

Engine window (1) then Settings (2).

Add Slack to the Rules Engine

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 26/35

Click Palette (1).

Then **Install (2).

Type slack in the search box (3).

Install the item node-red-contrib-slack (4).

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 27/35

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

This is the flow we'll be building:

Building the slack flow

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 28/35

This flow reuses the Level Alarm and Make Readable Messages from the previous

tutorial. You can either reuse that flow, or copy and paste them into a new flow.

From the Social section of the palette, drag a slack (out) node to your flow.

Double click to configure it.

Set the WebHook URL to the webhook URL you got from Slack.

Set the other fields as desired.

Connect up the nodes in your flow.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 29/35

I added a debug node, but that's not required.

Deploy.

Cause an alarm condition, and you should see a message in Slack!

This tutorial expands on the previous tutorial.

However, the technique for reporting when a device stops responding could easily be

changed to email, Twilio SMS, or any number of other notification methods.

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

This is the flow we'll be creating in this section:

Posting to Slack when a device stops reporting

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 30/35

From the Particle section of the palette, drag a subscribe node to a new flow.

Set the Name to Level Test4 (or anything else).

Set the Auth to the Particle authorization you created earlier in the Real-time Alerting

tutorial.

Set the Event to Level. This will trigger on any of the level reporting events.

Set the Device to the name of the device that's reporting. In all of the other examples, we

left that field blank, but we're interested in when a specific device stops reporting here.

Leave the Scope as User.

From the Function section of the palette, drag trigger to your flow.

Double-click to configure it.

Set Send to nothing.

Set then to wait for 125 seconds.

Make sure extend delay if new message arrive is checked.

Set Handling to all messages

Set the Name to trigger if no response for 2 minutes (or anything else).

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 31/35

From the Function section of the palette, drag function to your flow. Note that this is not

the function in the Particle section of the palette.

Double-click to configure it.

Set the Name to Make Readable Message (or anything else).

Set the Function to:

msg.payload = 'No response from ' + msg.device_id + ', last level was ' +
msg.payload + ' at ' + msg.published_at;
return msg;

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 32/35

Copy and paste the Post to Slack node from the previous tutorial.

Connect your nodes together into a flow.

I added a debug of the payload for easier debugging.

Deploy your flow.

When an event has been received and it's in the two-minute timeout, a blue dot will

appear in the bottom left of the trigger node.

If you turn off the publishing device and wait 2 minutes, there should be a message in

Slack.

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 33/35

You can easily expand this to monitor more than one device by adding more subscribe

and trigger nodes. They can just feed into the existing Make Readable Message.

The Photon is programmed with the following code. You can also use this link to open it in the

Particle Web IDE.

Device firmware

#include "Particle.h"

SerialLogHandler logHandler;

// This is the pin the sensor is connected to
const int SENSOR_PIN = A0;

// How often to poll the sensor (in milliseconds) to see if it's in alert
state
const unsigned long POLL_INTERVAL_MS = 1000;

// How often to publish the sensor (in milliseconds) if the value changes
const unsigned long PUBLISH_INTERVAL_MS = 60000;

// Used to note the last time the value was polled (value from millis())
unsigned long lastPollMs = 0;

// Used to note the last time the value was published (value from millis())
// The initial value means it will publish 3000 milliseconds after startup
unsigned long lastPublishMs = 3000 - PUBLISH_INTERVAL_MS;

// Set to true once we've alerted; flag is cleared when the level drops below
ALERT_LEVEL
bool hasAlerted = false;

// The current level (read every second) that's exposed by a Particle.variable
double currentLevel = 0.0;

// The level to alert at
double alertLevel = 2.0;

// Function to read the level in inches
double readLevelInches();

https://go.particle.io/shared_apps/5babb9b33242a939e300171a

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 34/35

void setup() {
 Serial.begin();

 // In addition to publishing the level, allow it to be retrieved as a
variable
 Particle.variable("level", currentLevel);
}

void loop() {
 if (millis() - lastPollMs >= POLL_INTERVAL_MS) {
 lastPollMs = millis();

 // This block is executed once per second

 currentLevel = readLevelInches();
 if (currentLevel >= alertLevel) {
 if (!hasAlerted) {
 Particle.publish("LevelAlarm", String(currentLevel), PRIVATE);
 Log.info("Level %lf published (alarm)", currentLevel);
 hasAlerted = true;
 }
 }
 else {
 // Once level drops below the alert level, clear the hasAlerted
flag
 if (hasAlerted) {
 Particle.publish("LevelClear", String(currentLevel), PRIVATE);
 Log.info("Level %lf published (alarm cleared)", currentLevel);
 hasAlerted = false;
 }
 }
 }

 if (millis() - lastPublishMs >= PUBLISH_INTERVAL_MS) {
 lastPublishMs = millis();

 // This block is executed once per minute

 double level = readLevelInches();

 Particle.publish("LevelValue", String(level), PRIVATE);
 Log.info("Level %lf published (periodic)", level);

7/6/2020 Real-time Alerting | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/real-time-alerting/ 35/35

The code above uses the testing potentiometer.

 }
}

double readLevelInches() {
 //

 double value = (double) analogRead(SENSOR_PIN);

 // Temporary: connect potentiometer outer pins to 3V3 and GND. Center to
A0.
 // Far left = 0V = 0 = 0"
 // Far right = 3.3V = 4096 = 5.0"

 return (value * 5.0) / 4095.0;
}

