
7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 1/13

There are two communication primitives that you can use to remotely interact with a Particle

device in real-time:

Functions allow code on the device to be called when requested by the Device Cloud. A

string is passed to the function and an integer is returned.

Variables allow the device to record a value. The value (integer, double, or string) is only

retrieved by the cloud when needed.

The Rules Engine makes it possible to call functions and check variables as part of a flow. This

can help you tell a device to do something under certain conditions, or check a sensor

reading based on a cloud-side trigger.

In this tutorial, we'll expand on the previous real-time alerting tutorial and introduce some

new nodes for communicating with your Particle devices.

We'll be using the function and publish nodes in this section.

For the hardware side of this project we're using a second Photon and a buzzer.

If you don't have a buzzer, you can just use a plain Photon because the blue D7 LED turns on

whenever the buzzer would be turned on, so you can see the alarm conditions that way.

DEVICE COMMAND AND CONTROL WITH RULES ENGINE

Tutorial Hardware

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 2/13

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

This is the flow we'll be creating:

Creating the Flow

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 3/13

From the Particle group, drag subscribe node to your flow.

Double click to edit it.

Set Name to Level (can be anything).

Set Auth to the authentication we created in the real-time alerting tutorial.

Set Event to Level. This was LevelAlert in the previous tutorial, but we really only want

Level, which will match all of the Level events including LevelAlert, LevelClear, and

LevelValue.

Leave the Device field empty

Leave the Scope at User.

Click Done.

From the function group, drag a switch node to your flow.

Double click to edit it.

Set the Name to Event Type Switch (can be anything).

Change the *Property to msg.event** instead of msg.payload.

Set the first option to == LevelAlarm.

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 4/13

Click the Add button below the list box.

Set the second option to == LevelClear.

Click Done.

Unlike the nodes we've used before, you'll notice there are two outputs from our newly

created switch node.

From the Particle group, drag function node to your flow.

Double click to edit it.

Set Name to Buzzer On (can be anything).

Set Auth to the authentication we created in the real-time alerting tutorial.

Set Function to buzzer (case-sensitive, must match what the device firmware uses).

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 5/13

Set Argument to on (case-sensitive).

Set Device to the name of the device that's running the buzzer.

Leave the Scope at User.

Create another function node, but this time:

Set Argument to off (case-sensitive).

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 6/13

Connect the nodes together as pictured.

Deploy your flow.

Causing an level alarm situation should turn on the buzzer.

Removing the level alarm situation should turn off the buzzer.

The Photon is programmed with the following code. You can also use this link to open it in the

Particle Web IDE.

Device firmware

#include "Particle.h"

SerialLogHandler logHandler;

// This is the pin the buzzer is connected to
const int BUZZER_PIN = D2;
const int LED_PIN = D7;

void buttonHandler(system_event_t event);

https://go.particle.io/shared_apps/5babbaa43242a990ac0015b5

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 7/13

In the Particle section of the palette, a variable allows a flow to get a value from a specific

device in real-time. This node is used in the Visualization and Analytics tutorial, Querying the

Variables

int buzzerFunction(String cmd);

void setup() {
 Serial.begin();

 pinMode(BUZZER_PIN, OUTPUT);
 digitalWrite(BUZZER_PIN, LOW);

 pinMode(LED_PIN, OUTPUT);
 digitalWrite(LED_PIN, LOW);

 Particle.function("buzzer", buzzerFunction);

 System.on(button_click, buttonHandler);
}

void loop() {
}

int buzzerFunction(String cmd) {
 if (cmd.equals("on")) {
 digitalWrite(BUZZER_PIN, HIGH);
 digitalWrite(LED_PIN, HIGH);
 }
 else {
 digitalWrite(BUZZER_PIN, LOW);
 digitalWrite(LED_PIN, LOW);
 }
 return 0;
}

void buttonHandler(system_event_t event) {
 // Clicking the SETUP button mutes the buzzer.
 // The blue D7 LED will stay lit until the alarm condition is no longer
occurring.
 digitalWrite(BUZZER_PIN, LOW);
}

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 8/13

value.

Instead of using a Particle function to turn on a buzzer on a specific device, you can use

Particle publish to notify any buzzer in your account. You can have as many as you want,

without changing the Rules Engine code!

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

This is the flow we'll be creating:

From the Particle group, drag a subscribe node to the workspace.

Double click to edit.

Set the Name, Auth, and Event ("Level").

Leave the Device field blank (allow all devices)

Publish

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 9/13

In the Function section, drag a function node into the workspace. Note that this is a

function function, not a Particle function!

Set the function to:

if (msg.event === 'LevelAlarm') {
 // LevelAlarm turns on the buzzer
 msg.payload = 'on';
}
else
if (msg.event === 'LevelClear') {
 // LevelClear turns off the buzzer
 msg.payload = 'off';
}
else {
 // Ignore any other event
 // (most likely LevelValue)
 return null;
}

return msg;

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 10/13

From the Particle group, drag a publish node to the workspace.

Double click to edit.

Set the Name, Auth, and Event ("alertBuzzer").

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 11/13

The firmware on the device is quite similar. You can also use this link to open it in the Particle

Web IDE.

#include "Particle.h"

SerialLogHandler logHandler;

// This is the pin the buzzer is connected to
const int BUZZER_PIN = D2;
const int LED_PIN = D7;

void buttonHandler(system_event_t event);
void buzzerHandler(const char *event, const char *param);

void setup() {
 Serial.begin();

 pinMode(BUZZER_PIN, OUTPUT);
 digitalWrite(BUZZER_PIN, LOW);

 pinMode(LED_PIN, OUTPUT);
 digitalWrite(LED_PIN, LOW);

 Particle.subscribe("alertBuzzer", buzzerHandler, MY_DEVICES);

 System.on(button_click, buttonHandler);

https://go.particle.io/shared_apps/5babbae73242a9571a00172f

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 12/13

The debug log in the Rules Engine can be helpful as well:

}

void loop() {
}

void buzzerHandler(const char *event, const char *data) {
 Log.info("buzzerHandler %s %s", event, data);

 if (strcmp(data, "on") == 0) {
 digitalWrite(BUZZER_PIN, HIGH);
 digitalWrite(LED_PIN, HIGH);
 }
 else {
 digitalWrite(BUZZER_PIN, LOW);
 digitalWrite(LED_PIN, LOW);
 }
}

void buttonHandler(system_event_t event) {
 // Clicking the SETUP button mutes the buzzer.
 // The blue D7 LED will stay lit until the alarm condition is no longer
occurring.
 digitalWrite(BUZZER_PIN, LOW);
}

7/6/2020 Device Command and Control | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/device-command-and-control/ 13/13

