
7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 1/14

In many cases, adding business logic around when over-the-air (OTA) firmware updates are

delivered can lead to a better end-user experience. This automation can make OTA updates

more seamless and intelligent, with less need for manual intervention.

This tutorial shows how to dynamically update application firmware running on a device using

the Rules Engine.

The sample hardware is a Photon with an illuminated button. When there's a firmware update

available, the button lights up. Pressing the button installs the update!

At startup and every 10 minutes, the Photon sends a checkFirmware event to the cloud

with its current product firmware version number.

If there is a newer version of product firmware available, the Rules Engine calls the

device's updateAvailable function.

DYNAMIC FIRMWARE MANAGEMENT WITH RULES ENGINE

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 2/14

The function handler turns on the LED within the button. This is the there's a firmware

update available for this device signal.

As soon as the user presses the illuminated button, the Rules Engine will initiate a lock

and flash for the device, causing it to be updated.

The Rules Engine flow has three parts:

Getting the firmware version list

Handling the checkFirmware event

Handling the updateFirmware event

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 3/14

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

In this section we'll get the list of firmware versions using the Particle cloud API and save the

version number of the most recent version.

Getting the firmware version list

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 4/14

In the Input section, drag an inject node into the workspace.

Double click to edit

Set Inject once after 2 seconds

Set Repeat interval

Set every 10 minutes

This will retrieve the list of firmware versions at startup and every 10 minutes thereafter.

In the Particle section, drag a particle api node into the workspace.

Double click to edit

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 5/14

Set your product authentication

Set Method GET

Set URL /v1/products/8097/firmware

Make sure you select your product client ID and secret, not your personal account. Also make

sure you change 8097 to your product ID.

In the Function section, drag a function node into the workspace. Note that this is a

function function, not a Particle function!

Set the function to:

var latest = 0;

for(var ii = 0; ii < msg.payload.length; ii++) {
 if (msg.payload[ii].version > latest) {
 latest = msg.payload[ii].version;
 }
}

flow.set('latestFirmwareVersion', latest);

msg.payload = latest;

return msg;

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 6/14

This saves the latest version number the flow variable lastestFirmwareVersion so it can be

used by other parts of the flow.

In this section we'll handle the checkFirmware event that the device sends to the cloud when

it wants to know if there's new firmware.

Handling the checkFirmware event

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 7/14

From the Particle group, drag a subscribe node to the workspace.

Double click to edit.

Set the Name, Auth, and Event ("checkFirmware").

Leave the Device field blank (allow all devices)

Set the Scope to Product and set your Product ID (mine is 8097).

In the Function section, drag a function node into the workspace. Note that this is a

function function, not a Particle function!

Set the function to:

var deviceFirmwareVersion = parseInt(msg.payload);

var latestFirmwareVersion = flow.get('latestFirmwareVersion');

if (!latestFirmwareVersion || deviceFirmwareVersion >= latestFirmwareVersion)
{
 // No latest firmware version, or it's the same or newer
 return null;

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 8/14

What this does is compare the firmware version sent from the device (deviceFirmwareVersion)

to the latestFirmwareVersion that the previous flow generated.

If there is no update available, the flow returns null, which means the remainder of the nodes

in the flow will not be executed.

If there is an update, control will pass to the next node.

From the Particle group, drag a function node to the workspace. Note that this one is a

Particle function, not a Function function!

Double click to edit.

Set the Name, Auth, and function ("updateAvailable")

}

msg.argument = ''; // latestFirmwareVersion;

return msg;

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 9/14

Set the Scope to Product and set your Product ID (mine is 8097).

This node uses the Particle function to call the updateAvailable function handler in the device

firmware. This turns on the LED in the button so the user knows there is an update available.

Handling the updateFirmware event

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 10/14

This section handles the request from the device to update its firmware now.

From the Particle group, drag a subscribe node to the workspace.

Double click to edit.

Set the Name, Auth, and Event ("updateFirmware").

Leave the Device field blank (allow all devices)

Set the Scope to Product and set your Product ID (mine is 8097).

In the Function section, drag a function node into the workspace. Note that this is a

function function, not a Particle function!

Set the function to:

var latestFirmwareVersion = flow.get('latestFirmwareVersion');

msg.url = '/v1/products/8097/devices/' + msg.device;

var req = {};
req.desired_firmware_version = latestFirmwareVersion;

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 11/14

This gets the latest firmware version and then creates a Particle API request to lock and flash

that version.

In the Particle section, drag a particle api node into the workspace.

Double click to edit.

Set your product authentication.

Set Method PUT.

You can leave the rest blank as the URL and request are set by the previous node.

req.flash = true;

msg.payload = JSON.stringify(req);

return msg;

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 12/14

The Photon is programmed with the following code. You can also use this link to open it in the

Particle Web IDE.

Device Firmware

#include "Particle.h"

// particle compile photon --target 0.8.0-rc.10 --saveTo firmware.bin

PRODUCT_ID(8097);
PRODUCT_VERSION(6);
SYSTEM_THREAD(ENABLED);

#include "neopixel.h"
#include "Debounce.h"

SerialLogHandler logHandler;

const int NEOPIXEL_PIN = D2;
const size_t NEOPIXEL_COUNT = 1;
const int NEOPIXEL_BRIGHTNESS = 15;
Adafruit_NeoPixel strip(NEOPIXEL_COUNT, NEOPIXEL_PIN, WS2812B);
Debounce button;

https://go.particle.io/shared_apps/5babba3d3242a9571a001728

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 13/14

const int SWITCH_IN_PIN = D5;
const int SWITCH_LED_PIN = D3;

const unsigned long VERSION_CHECK_PERIOD_MS = 10 * 60 * 1000; // Every 10
minutes
unsigned long lastVersionCheck = 0;
unsigned long versionCheckPeriod = 10000; // Initially 10 seconds
bool updateAvailable = false;

extern uint16_t __system_product_version; // This is where PRODUCT_VERSION is
saved to

int updateAvailableHandler(String param);

void setup() {
 Serial.begin();

 Particle.function("updateAvailable", updateAvailableHandler);

 button.attach(SWITCH_IN_PIN, INPUT_PULLUP);

 pinMode(SWITCH_LED_PIN, OUTPUT);
 digitalWrite(SWITCH_LED_PIN, LOW);

 strip.setBrightness(NEOPIXEL_BRIGHTNESS);
 strip.begin();
}

void loop() {
 if (button.update() && button.fell()) {
 Log.info("button pressed");
 if (updateAvailable && Particle.connected()) {
 updateAvailable = false;
 digitalWrite(SWITCH_LED_PIN, LOW);

 Particle.publish("updateFirmware", "", PRIVATE);
 }
 }

 if (millis() - lastVersionCheck >= versionCheckPeriod) {
 lastVersionCheck = millis();

7/6/2020 Dynamic Firmware Management | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/dynamic-firmware-management/ 14/14

The project.properties file adds these libraries:

 if (Particle.connected()) {
 // Check firmware version
 char buf[32];
 snprintf(buf, sizeof(buf), "%d", __system_product_version);
 Particle.publish("checkFirmware", buf, PRIVATE);
 Log.info("requesting checkFirmware %s", buf);

 versionCheckPeriod = VERSION_CHECK_PERIOD_MS;
 }
 else {
 // Not connected, check again in 10 seconds
 versionCheckPeriod = 10000;
 }
 }
}

int updateAvailableHandler(String param) {
 Log.info("updateAvailable %s", param.c_str());

 digitalWrite(SWITCH_LED_PIN, HIGH);
 updateAvailable = true;

 return 0;
}

dependencies.neopixel=0.0.14
dependencies.Debounce=0.0.1

