
7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 1/27

Remote Diagnostics allow you to monitor the health of your fleet of devices in real time. The

Rules Engine can help you understand device health indicators in aggregate.

In this section, we'll use the diagnostic data to automatically add devices to a group

"investigate" when they report bad signal strength.

Drag the Copy Rules button into the Rules Engine window to create the flow automatically, or

you can create the flow from scratch with the steps below.

Copy Rules

We'll be creating this flow:

FLEET-WIDE REMOTE DIAGNOSTICS WITH RULES ENGINE

Flagging devices based on diagnostic data

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 2/27

From the Particle group, drag a subscribe node to the workspace.

Double click to edit.

Set the Name, Auth, and Event ("spark/device/diagnostics/update").

Leave the Device field blank (allow all devices)

Set the Scope to Product and set your Product ID (mine is 1319).

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 3/27

From the Function group, drag a function node to the workspace. Note that this is a

Function function, not a Particle function!

Double click to edit.

Set the function body to:

var jsonPayload = JSON.parse(msg.payload);

var rssi = jsonPayload.device.network.signal.rssi;

if (rssi > -70) {
 // Strong signal - ignore
 return null;
}

// Weak signal - pass this device along for grouping
// First get the existing group data
msg.url = '/v1/products/1319/devices/' + msg.device;

return msg;

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 4/27

This checks the RSSI (signal strength), and if it's low, starts by querying the existing

information for this device.

In the Particle section, drag a particle api node into the workspace.

Double click to edit.

Set your product authentication.

Set Method GET.

Leave the URL field blank, as it's set by the previous function node.

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 5/27

From the Function group, drag a function node to the workspace. Note that this is a

Function function, not a Particle function!

Double click to edit.

Set the function body to:

This adds "investigate" group to the existing device groups for this device and prepares the

Particle API request.

var groups = msg.payload.groups;
groups.push('investigate');

msg.url = '/v1/products/1319/devices/' + msg.device;

var req = {};
req.groups = groups;

msg.payload = JSON.stringify(req);

return msg;

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 6/27

In the Particle section, drag a particle api node into the workspace.

Double click to edit.

Set your product authentication.

Set Method PUT.

Leave the URL field blank, as it's set by the previous function node.

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 7/27

Connect the nodes as pictured above.

Deploy!

The Rules Engine debug log should show something like this:

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 8/27

In this section we will:

Show a table of devices in the dashboard

Automatically update the temperatures from all of the sensors

Adding on this, in the second part we will:

Add rules so when the temperature is out of range, the LED turn red

And in the third part we will:

Add device diagnostics to the table, to show the current Wi-Fi signal strength (RSSI) for

the sensor

Showing tables of devices in the dashboard

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 9/27

We'll be using our demonstration temperature monitor product. The hardware consists of a

Photon, a temperature sensor, and a bright RGB LED for alerting.

The device firmware can be found at this link.

This tutorial also shows how to use product mode to interact with a Particle product vs.

individual developer devices.

All of the flows in this section use this recipe to map the device IDs in the events into device

names. It's a handy technique to include in your scripts.

We'll be setting up this flow:

Product name flow

https://go.particle.io/shared_apps/5babbb363242a9ea27001621

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 10/27

In the Input section, drag an inject node into the workspace.

Double click to edit

Set Inject once after 1 seconds

Set Repeat interval

Set every 4 hours

In the Particle section, drag a particle api node into the workspace.

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 11/27

Double click to edit

Set your product authentication

Set Method GET

Set URL /v1/products/1319/devices

Make sure you select your product client ID and secret, not your personal account. Also make

sure you change 1319 to your product ID.

The last node in the flow saves the data so it can be used by other nodes in the flow.

In the Function section, drag a function node into the workspace. Note that this is a

function function, not a Particle function!

Set the function to:

// Feedback from the Particle API node
var deviceNames = {};

// Payload devices is an array of devices in devices for this product
for(var ii = 0; ii < msg.payload.devices.length; ii++) {
 deviceNames[msg.payload.devices[ii].id] = msg.payload.devices[ii].name;
}

// Save for future use by this flow
flow set('deviceNames' deviceNames);

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 12/27

What this does is that the response from the list devices API request, and build a table (hash)

of mappings from device ID to device name and saves it so other nodes in the flow can

access the information.

While this example uses temperatures, you could use this technique for displaying a table of

any values generated by your sensors.

Show temperature in dashboard

flow.set(deviceNames , deviceNames);

node.log('got ' + msg.payload.devices.length + ' device names');

return null;

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 13/27

We'll be creating this flow to process the tempmon events.

From the Particle group, drag a subscribe node to the workspace.

Double click to edit.

Set the Name, Auth, and Event.

Leave the Device field blank (allow all devices)

Set the Scope to Product and set your Product ID (mine is 1319).

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 14/27

From the Function group, drag a function node to the workspace. Note that this is a

Function function, not a Particle function!

Double click to edit.

Set the function body to:

var deviceValues = context.get('deviceValues');
if (deviceValues === undefined) {
 deviceValues = {};
}

var deviceNames = flow.get('deviceNames');

var deviceName;

if (deviceNames != undefined && deviceNames[msg.device]) {
 deviceName = deviceNames[msg.device];
}
else {
 deviceName = msg.device;
}

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 15/27

What this does is:

Get the saved deviceNames object for this flow, creating it if necessary.

Convert the device ID to a name (if possible).

Save the device ID, device name, and the value

deviceValues[msg.device] = {
 device:msg.device,
 name:deviceName,
 value:msg.payload
};

context.set('deviceValues', deviceValues);

msg.payload = {deviceValues:deviceValues};

return msg;

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 16/27

From the Dashboard group, drag a template node to the workspace.

Set the template as follows:

What this does is create an automatically expanding table of devices.

<div layout="row" layout-align="start center">
 Device
 Temperature
</div>
<div layout="row" layout-align="start center" ng-repeat="device in
msg.payload.deviceValues">
 {{device.name}}
 {{device.value}}
</div>

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 17/27

Deploy the flow and view the dashboard

The output should look like the table in the beginning of this section.

One thing you can do with the Rules Engine is put your business logic in a more easily edited

Rules Engine. For example, we'll add a feature to turn the LED on the board red when the

temperature is too high.

Rather than embedding the temperatures and logic in the device firmware, we can put it in

the Rules Engine. This makes it easy to change the limits without rebuilding and deploying

code.

Also, you have complete flexibility. Want to have multiple levels so when the temperature

gets really high it blinks red? It's a simple change in the Rules Engine!

Add business logic and feedback

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 18/27

This builds on the previous example.

From the Function group, drag a function node to the workspace. Note that this is a

Function function, not a Particle function!

Double click to edit.

Set the function body to:

This is the business logic. It maps a temperature threshold (82.0) to a command to device

firmware.

Setting the argument to 0404040 sets the LED to light gray.

Setting the argument to 0ff0000 sets the LED to red.

var temp = parseFloat(msg.payload);
if (temp < 82.0) {
 // LED0 gray (404040)
 msg.argument = '0404040';
}
else {
 // LED0 red (ff0000)
 msg.argument = '0ff0000';
}

return msg;

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 19/27

From the Particle group, drag a function to the workspace.

Set the parameters as follows.

Make sure you set the Product to your Product ID

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 20/27

The Debug log in the Rules Engine can be helpful in diagnosing any problems you encounter.

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 21/27

While the table of temperatures is nice, you can use the Rules Engine to mix in all sorts of

other information. In this example, we use the device diagnostics feature to log the Wi-Fi

signal strength (RSSI) in the table as well.

We'll just add a few nodes on the table example.

Add device diagnostics

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 22/27

From the Particle group, drag a subscribe node to the workspace.

Double click to edit.

Set the Name, Auth, and Event ("spark/device/diagnostics/update").

Leave the Device field blank (allow all devices)

Set the Scope to Product and set your Product ID (mine is 1319).

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 23/27

From the Function group, drag a function node to the workspace. Note that this is a

Function function, not a Particle function!

Double click to edit.

Set the function body to:

var deviceValues = flow.get('deviceValues');
if (deviceValues === undefined) {
 deviceValues = {};
}

var thisDeviceValues = deviceValues[msg.device];
if (thisDeviceValues === undefined) {
 thisDeviceValues = {};
}

var jsonPayload = JSON.parse(msg.payload);

thisDeviceValues.rssi = jsonPayload.device.network.signal.rssi;

deviceValues[msg.device] = thisDeviceValues;

flow.set('deviceValues', deviceValues);

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 24/27

Connect the output of the function node Update Signal In Table into the Device Info

Table node.

Edit the Device Info Table node to add the new columns to the template:

msg.payload = {deviceValues:deviceValues};

return msg;

<div layout="row" layout-align="start center">
 Device
 Temperature
 RSSI
</div>
<div layout="row" layout-align="start center" ng-repeat="device in
msg.payload.deviceValues">

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 25/27

Edit the Update Table node code

This code allows the deviceValues data to include both the temperature and RSSI data,

coming from two different sources.

 {{device.name}}
 {{device.value}}
 {{device.rssi}}
</div>

var deviceValues = flow.get('deviceValues');
if (deviceValues === undefined) {
 deviceValues = {};
}

var deviceNames = flow.get('deviceNames');

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 26/27

var deviceName;

if (deviceNames != undefined && deviceNames[msg.device]) {
 deviceName = deviceNames[msg.device];
}
else {
 deviceName = msg.device;
}

// Just grab the HH:MM:SS (UTC) out of published_at
var pat = /\d{2}:\d{2}:\d{2}/;

var thisDeviceValues = deviceValues[msg.device];
if (thisDeviceValues === undefined) {
 thisDeviceValues = {};
}

thisDeviceValues.device = msg.device;
thisDeviceValues.name = deviceName;
thisDeviceValues.value = msg.payload;
thisDeviceValues.updated = pat.exec(msg.published_at)[0];

deviceValues[msg.device] = thisDeviceValues;

flow.set('deviceValues', deviceValues);

msg.payload = {deviceValues:deviceValues};

return msg;

7/6/2020 Fleet-wide Remote Diagnostics | Tutorials | Particle

https://docs.particle.io/tutorials/iot-rules-engine/fleet-wide-remote-diagnostics/ 27/27

