

TEST REPORT

Applicant	Particle Industries, Inc
Address	126 Post St,4th floor, San Francisco, CA 94108 USA

Manufacturer or Supplier	Particle Industries	Particle Industries, Inc					
Address	126 Post St,4th floor, San Francisco, CA 94108 USA						
Product	Tracker One LTE I	W1					
Brand Name	Particle						
Model	ONE402M						
Additional Models & Model Difference	ONE404M, ONE4	02M-NB, ONE	404M-NB, see se	ction 3.1 note			
Date of tests	Aug. 18, 2020 ~ S Oct. 16, 2020 ~ O						
the tests have been	carried out partially	according to the	ne requirements o	of the following standard:			
 ☑ Canada RSS-24 ☑ Canada RSS-60 Transmitter Radiat 	en Issue 5 (2019-03	3)					
	•	-	o <u>COMPLY</u> with t	the test requirement			
	d by Breeze Jiang			proved by Glyn He			
Senior Project	Engineer / EMC De	partment	Assistant N	lanager / EMC Department			
prece Aug							
Date: Dec. 21, 2020 This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying on replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.							
	No. 96, 0	Juantai Road (Hou	jie Section), Houjie	Tel: +86 769 8998 2098			

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

TABLE OF CONTENTS

RELE	EASE C	CONTROL RECORD	4
1	SUMM	ARY OF TEST RESULTS	5
2	MEAS	UREMENT UNCERTAINTY	5
3	GENE	RAL INFORMATION	6
3.′	I GEN	IERAL DESCRIPTION OF EUT	6
3.2	2 DES	CRIPTION OF TEST MODES	7
	3.2.1.	CONFIGURATION OF SYSTEM UNDER TEST	7
	3.2.2.	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	7
3.3	3 GEN	IERAL DESCRIPTION OF APPLIED STANDARDS 1	0
3.4	4 DES	CRIPTION OF SUPPORT UNITS 1	0
4	TEST	TYPES AND RESULTS1	1
4.′		NDUCTED EMISSION MEASUREMENT1	1
	4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT1	1
	4.1.2	TEST INSTRUMENTS1	1
	4.1.3	TEST PROCEDURES 1	2
	4.1.4	DEVIATION FROM TEST STANDARD 1	2
	4.1.5	TEST SETUP 1	3
	4.1.6	EUT OPERATING CONDITIONS 1	3
	4.1.7	TEST RESULTS 1	3
4.2	2 RAD	DIATED EMISSION MEASUREMENT 1	4
	4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT 1	4
	4.2.2	TEST INSTRUMENTS 1	5
	4.2.3	TEST PROCEDURES 1	6
	4.2.4	DEVIATION FROM TEST STANDARD 1	7
	4.2.5	TEST SETUP 1	7
	4.2.6	EUT OPERATING CONDITIONS 1	8
	4.2.7	TEST RESULTS 1	9
4.3	3 6DB	BANDWIDTH MEASUREMENT	24
	4.3.1	LIMITS OF 6DB BANDWIDTH MEASUREMENT 2	24
	4.3.2	TEST INSTRUMENTS	24
	4.3.3	TEST PROCEDURE	25
	4.3.4	DEVIATION FROM TEST STANDARD	25
	4.3.5	TEST SETUP	25
	4.3.6	EUT OPERATING CONDITIONS	25
		No. 06. Guantai Bood (Hauija Section). Hauija	

	4.3.7	TEST RESULTS
4.4	4 MAX	IMUM OUTPUT POWER
	4.4.1 LI	MITS OF MAXIMUM OUTPUT POWER MEASUREMENT
	4.4.2 TI	EST SETUP
	4.4.3 TI	EST INSTRUMENTS
	4.4.4 TI	EST PROCEDURES
	4.4.5 D	EVIATION FROM TEST STANDARD
	4.4.6 E	UT OPERATING CONDITIONS
	4.4.7 TE	EST RESULTS
4.5	5 POW	/ER SPECTRAL DENSITY MEASUREMENT 28
	4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT
	4.5.2	TEST SETUP
	4.5.3	TEST INSTRUMENTS
	4.5.4	TEST PROCEDURE
	4.5.5	DEVIATION FROM TEST STANDARD
	4.5.6	EUT OPERATING CONDITION
	4.5.7	TEST RESULTS
4.6	S OUT	OF BAND EMISSION MEASUREMENT
	4.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT
	4.6.2	TEST SETUP
	4.6.3	TEST INSTRUMENTS
	4.6.4	TEST PROCEDURE
	4.6.5	DEVIATION FROM TEST STANDARD
	4.6.6	EUT OPERATING CONDITION
	4.6.7	TEST RESULTS
4.7	7 000	UPIED BANDWIDTH MEASUREMENT
	4.7.1	TEST INSTRUMENTS
	4.7.2	TEST PROCEDURE
	4.7.3	DEVIATION FROM TEST STANDARD
	4.7.4	TEST SETUP
	4.7.5	EUT OPERATING CONDITIONS
	4.7.6	TEST RESULTS
5	РНОТС	OGRAPHS OF THE TEST CONFIGURATION
6	APPEN	IDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT
	BY TH	E LAB

RELEASE CONTROL RECORD

ISSUE NO.	SSUE NO. REASON FOR CHANGE	
IC2008WDG0081-1	Original release	Sep. 23, 2020
IC2009WDG0427-1	Based on the original report IC2008WDG0081-1 added GPIO isolation and LDO and model number, need retest radiated (below 1GHz) after engineer evaluated.	Dec. 21, 2020

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: RSS-247; RSS-Gen									
Standard RSS-Gen	Test Type and Limit	Result	Remark							
RSS-Gen 8.8	AC Power Conducted Emission	N/A	N/A							
RSS-Gen 6.7	Occupied Bandwidth Measurement	N/A	N/A							
8.10 Table 7	Restricted Band of Operation	N/A	N/A							
8.9 Table 5 Transmitter Radiated Emissions		PASS	Meet the requirement of limit.							
Standard	Test Type and Limit		Remark							
RSS-247										
5.2(a)	6db Bandwidth Measurement	N/A	N/A							
5.2(b)	Power Spectral Density Measurement	N/A	N/A							
5.4(d)	Maximum Output Power	N/A	N/A							
5.5	Out of band Emission Measurement	N/A	N/A							

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
	9KHz ~ 30MHz	2.16dB	
Radiated emissions	30MHz ~ 1GMHz	3.60dB	
Radiated emissions	1GHz ~ 18GHz	4.82dB	
	18GHz ~ 40GHz	5.00dB	
Conducted emissions	0.15MHz ~ 30MHz	2.70dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Tracker One LTE M1		
MODEL NO.	ONE402M		
ADDITIONAL MODELS	ONE404M, ONE402M-NB, ONE404M-NB		
IC	20127-ONE40X		
NOMINAL VOLTAGE	LI+ pin: DC+3.6v4.2V or Vusb PIN: DC+4.5V5.5V or Vin PIN: DC 6V30V		
MODULATION TECHNOLOGY	DTS		
MODULATION TYPE	BT-LE for GFSK		
OPERATING FREQUENCY	2402-2480MHz		
OUTPUT POWER(PEAK)	9.931mW (Maximum)		
ANTENNA TYPE	FPCB Antenna, 1.71dBi Gain, or Ceramic Antenna, 0dBi Gain		
I/O PORTS	Refer to user's manual		
CABLE SUPPLIED	N/A		
PRODUCT SW/HW	V1.5.4/V1.0		
RADIO SW/HW	V1.5.4/V1.0		
TEST SW VERSION	nRFgo Studio		
RF POWER SETTING IN TEST SW	nRFgo Studio		

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions, but only the worst case was shown in test report.
- 3. Please refer to the EUT photo document (Reference No.: 2009WDG0427) for detailed product photo.
- 4. The EUT have two antenna, but both of the antenna cannot transmit simultaneously.
- 5. Additional models ONE404M, ONE402M-NB, ONE404M-NB are identical with the test model ONE402M except the model number for marketing purpose.

3.2 DESCRIPTION OF TEST MODES

40 channels are provided for BT-LE(GFSK):

CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1. CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photographs of the test configuration for reference.

3.2.2. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports The worst case was found when positioned on X axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE	IGURE APPLICABLE TO				DESCRIPTION
MODE	RE<1G	RE<1G RE≥1G PLC APCM DESCRIPTION		DESCRIPTION	
А	-	-	-	-	Powered by Fully Battery with BT Link
В	\checkmark	-	-	-	Powered by Adapter with BT Link

Where

RE<1G: Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission **RE≥1G:** Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channels were selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION TYPE	PACKET
CHANNEL	CHANNEL	TECHNOLOGY		TYPE
-	-	-	-	-

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE TESTED CHANNEL CHANNEL		MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
BT-LE	0 to 39	39	DTS	GFSK	1

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	-	-	-	-	-

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
-	-	-	-	-	-

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY
RE<1G	25deg. C, 55%RH	DC5V from Adapter	Vincent
RE≥1G	-	-	-
PLC	-	-	-
APCM	-	-	-

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Canada RSS-247 Issue 2 (2017-02)

Canada RSS-Gen Issue 5 (2019-03)

ANSI C63.10-2013

Note: All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as a dependent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	DC 5V 2A	N/A	N/A
2	Adapter	PHICOMM	YH-AD-120A200-CH	N/A	N/A

NO.	DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB-C Line: Unshielded detachable 2.0m.
2	DC Line: Unshielded detachable 2.0m.

4 TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
	Quasi-peak	Average		
0.15 ~ 0.5	66 to 56	56 to 46		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

NOTE: 1.The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Mar. 11,21
Artificial Mains Network	Rohde&Schwarz	ENV216	101173	Mar. 11,21
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	100317	Mar. 12,21
Voltage probe	SCHWARZBECK	TK 9421	TK 9421-176	Jan. 16,21
Test software	ADT	ADT_Cond_V7.3.7	N/A	N/A

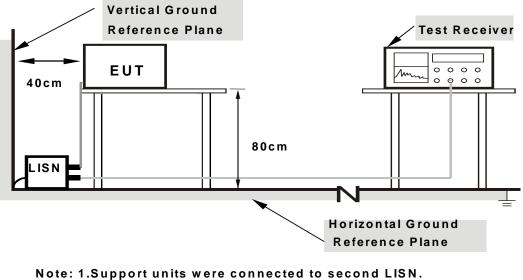
NOTES:

1. The test was performed in shielded room 553.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

4.1.7 TEST RESULTS

N/A

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in RSS-Gen Section 8.10, must also comply with the radiated emission limits specified in RSS-Gen Section 8.9. as following:

Table 5 – General field strength limits at frequencies above 30 MHz						
FREQUENCIES (MHz)	MEASUREMENT DISTANCE (meters)					
30 ~ 88	100	3				
88 ~ 216	150	3				
216 ~ 960	200	3				
Above 960	500	3				

Table 6 – General field strength limits at frequencies below 30 MHz					
FREQUENCIES (MHz)	Magnetic field strength (H-Field) (µA/m)	MEASUREMENT DISTANCE (meters)			
9 - 490 kHz	6.37/F (F in kHz)	300			
490 - 1705 kHz	63.7/F (F in kHz)	30			
1.705 - 30 MHz	0.08	30			

NOTE:

- 1. The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.
- 2. The lower limit shall apply at the transition frequencies.
- 3. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 4. dBuV/m=dBuA/m+51.5

4.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESU40	100449	Mar. 17,21
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV7	102331	May 13, 21
Active Loop Antenna (9KHz -30MHz)	SCHWARZBECK	FMZB 1519B	1519B-045	May 27,21
Amplifier (9KHz -1GHz)	Burgeon	BPA-530	100210	Mar. 14,21
Bilog Antenna (20MHz -2GHz)	Teseq	CBL 6111D	30643	May 29,21
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062558	May 29,21
Horn Antenna (18GHz -40GHz)	SCHWARZBECK	BBHA 9170	BBHA9170147	May 09, 21
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	NSEMC003	May 22,21
Test Software	ADT	ADT_Radiated_V 7.6.15.9.2	N/A	N/A
Broadband Preamplifier (1GHz~18GHz)	SCHWARZBECK	BBV9718	305	May 08,21
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Mar. 03,21
Test Software	ADT	ADT_Radiated_V 7.6.15.9.2	N/A	N/A
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	May 19,21

NOTES:

1. The test was performed in 966 Chamber.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.

4. The IC test Site Registration No. is 5936A.

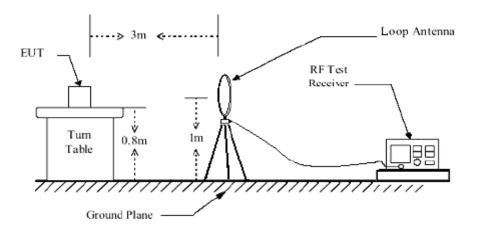
4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 1.5 meters (above 1GHz) and 0.8 meters (below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

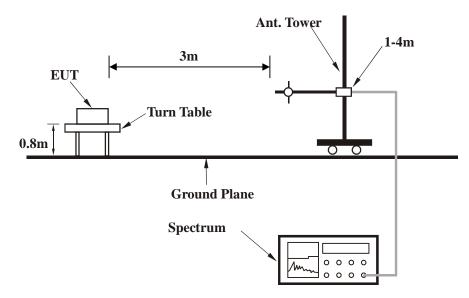
NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch



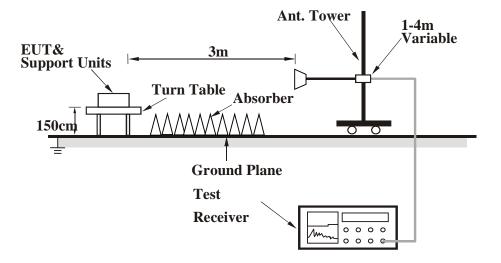
4.2.4 DEVIATION FROM TEST STANDARD


No deviation.

4.2.5 TEST SETUP

Below 30MHz test setup

Below 1GHz test setup



Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

Above 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

4.2.7 TEST RESULTS

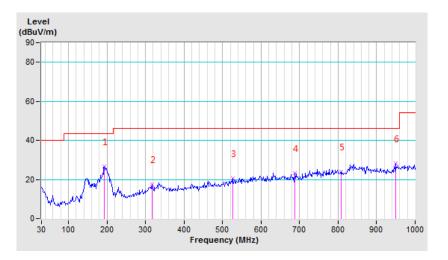
BELOW 1GHz WORST-CASE DATA:

BT-LE (GFSK) for FPCB Antenna

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)
1	193.22	26.59 QP	43.50	-16.91	1.00 H	145	45.80	-19.21
2	317.58	17.48 QP	46.00	-28.52	1.00 H	173	31.22	-13.74
3	525.88	20.63 QP	46.00	-25.37	1.00 H	180	29.40	-8.77
4	687.55	23.20 QP	46.00	-22.80	1.00 H	137	28.87	-5.67
5	808.80	24.13 QP	46.00	-21.87	1.00 H	240	27.88	-3.75
6	948.70	28.13 QP	46.00	-17.87	1.00 H	175	29.71	-1.58

REMARKS:


1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

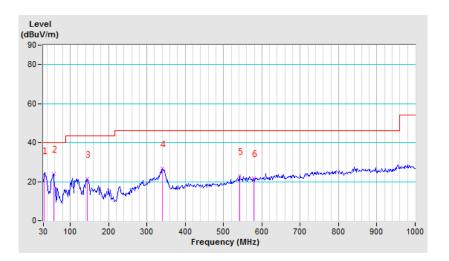
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The emission levels of other frequencies were greater than 20dB margin.

4. 9KHz~30MHz have been test and test data more than 20dB margin.

5. Margin value = Emission level – Limit value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.



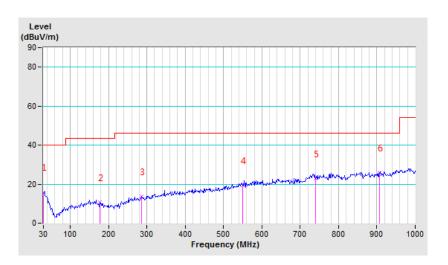
CHANNEL	TX Channel 39	DETECTOR	Quasi Book (QD)
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)	
1	31.55	23.21 QP	40.00	-16.79	1.00 V	137	35.93	-12.72	
2	56.43	24.15 QP	40.00	-15.85	1.00 V	57	47.72	-23.57	
3	145.03	21.44 QP	43.50	-22.06	1.00 V	175	39.55	-18.11	
4	340.90	26.72 QP	46.00	-19.28	1.00 V	156	39.88	-13.16	
5	541.43	22.71 QP	46.00	-23.29	1.00 V	195	30.77	-8.06	
6	578.73	21.85 QP	46.00	-24.15	1.00 V	147	28.94	-7.09	

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were greater than 20dB margin.
- 4. 9KHz~30MHz have been test and test data more than 20dB margin.
- 5. Margin value = Emission level Limit value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.


CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

BT-LE (GFSK) for Ceramic Antenna

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)
1	30.00	15.80 QP	40.00	-24.20	1.00 H	145	27.94	-12.14
2	177.68	10.60 QP	43.50	-32.90	1.00 H	173	29.41	-18.81
3	286.49	13.67 QP	46.00	-32.33	1.00 H	180	28.68	-15.01
4	550.75	19.53 QP	46.00	-26.47	1.00 H	137	27.32	-7.79
5	740.40	22.87 QP	46.00	-23.13	1.00 H	240	26.46	-3.59
6	906.73	26.05 QP	46.00	-19.95	1.00 H	175	28.68	-2.63

REMARKS:

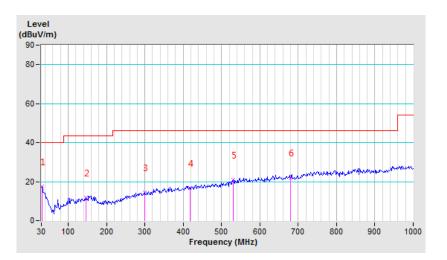
- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were greater than 20dB margin.
- 4. 9KHz~30MHz have been test and test data more than 20dB margin.
- 5. Margin value = Emission level Limit value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

CHANNEL	TX Channel 39	DETECTOR	Quasi Book (QD)
FREQUENCY RANGE	9KHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)	
1	31.55	16.08 QP	40.00	-23.92	1.00 V	137	28.80	-12.72	
2	146.59	11.90 QP	43.50	-31.60	1.00 V	57	29.90	-18.00	
3	298.93	14.36 QP	46.00	-31.64	1.00 V	175	28.67	-14.31	
4	418.62	16.60 QP	46.00	-29.40	1.00 V	156	27.65	-11.05	
5	530.54	21.09 QP	46.00	-24.91	1.00 V	195	29.64	-8.55	
6	679.78	21.92 QP	46.00	-24.08	1.00 V	147	27.67	-5.75	

REMARKS:


1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The emission levels of other frequencies were greater than 20dB margin.

4. 9KHz~30MHz have been test and test data more than 20dB margin.

5. Margin value = Emission level – Limit value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

ABOVE 1GHz TEST DATA:

N/A

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6DB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz

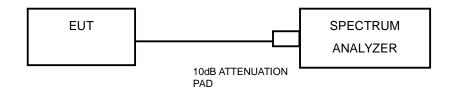
4.3.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
Power Sensor	Keysight	U2021XA	MY55060016	May 21,21
Power Sensor	Keysight	U2021XA	MY55060018	May 21,21
Power Meter	Anritsu	ML2495A	1139001	Mar. 11,21
Power Sensor	Anritsu	MA2411B	1531155	Mar. 11,21
Digital Multimeter	FLUKE	15B	A1220010DG	Oct.16, 20
Humid & Temp Programmable Tester	Haida	HD-2257	110807201	Nov. 14,20
Oscilloscope	Agilent	DSO9254A	MY51260160	Sep. 17,20
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV40	101094	Mar. 12,21
Signal Generator	Agilent	N5183A	MY50140980	Sep. 18,20
MXG-B RF Vector Signal Generator	Keysight	N5182B	MY56200288	Sep. 11,21
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	May 19,21
Attenuator	MINI	BW-S10W2+	S130129FGE2	N/A
DC Source	Keysight	E3642A	MY56146098	N/A

NOTES:

1. The test was performed in RF Oven room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.


4.3.3 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation.

4.3.5 TEST SETUP

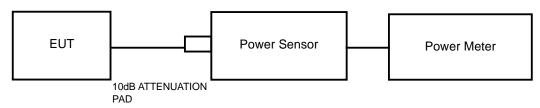
4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

N/A

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.



4.4 MAXIMUM OUTPUT POWER

4.4.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W(30dBm). The e.i.r.p. shall not exceed 4 W(36dBm)

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.3.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor and set the detector to PEAK. Record the power level.

An average power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power senso and set the detector to AVERAGE. Record the power level.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

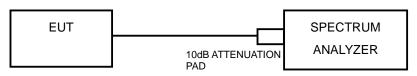
4.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

4.4.7 TEST RESULTS

N/A



4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.3.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the DTS bandwidth.
- c) Set RBW to: 3KHz
- d) Set VBW ≥3 x RBW.
- e) Detector = peak
- f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Use the peak marker function to determine the maximum amplitude level.

4.5.5 DEVIATION FROM TEST STANDARD

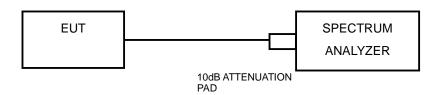
No deviation.

4.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

N/A



4.6 OUT OF BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

Refer to section 4.3.2 to get information of above instrument.

4.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 4.6.5 DEVIATION FROM TEST STANDARD

No deviation.

4.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 TEST RESULTS

N/A

4.7 OCCUPIED BANDWIDTH MEASUREMENT

4.7.1 TEST INSTRUMENTS

Refer to section 4.3.2 to get information of above instrument.

4.7.2 TEST PROCEDURE

The transmitter antenna output was connected to the spectrum analyzer through an attenuator. The resolution bandwidth shall be set to the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3 x the resolution bandwidth.

Below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.7.3 DEVIATION FROM TEST STANDARD

No deviation

4.7.4 TEST SETUP

4.7.5 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.6 TEST RESULTS

N/A

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---