E-Series module datasheet

The E-Series models below have been deprecated. The recommended replacement for the E402/E404 is the E404X.

See the Supply Secure FAQ for more information.

Functional description

Overview

The E-Series module is an IoT platform for creating cellular-connected products. It is an industrial version of Particle's Electron dev kit. It is specifically designed for mass scale manufacturing and integration. It comes with an affordable data plan for low-bandwidth applications. Plus the E-Series is available for more than 100 countries worldwide!

It also comes with Particle's development tools and cloud platform for managing and interacting with your new connected hardware.

Features

  • U-blox SARA-U201, SARA-R410M, or SARA-R510S cellular module
  • STM32F205RGT6 120MHz ARM Cortex M3 microcontroller
  • 1MB flash, 128KB RAM
  • BQ24195 power management unit and battery charger
  • MAX17043 fuel gauge
  • 30 mixed-signal GPIO and advanced peripherals
  • Open source software design
  • Real-time operation system (RTOS)
  • FCC (United States), CE (European Union), and ISED (Canada) certified
  • Embedded Particle EtherSIM (E314, E404, E404X)
  • Embedded Particle SIM (E310, E402)

Device OS support

It is recommended that you use the latest version in the 2.x LTS release line with the E-Series E310, E313, E314, E402, and E404 (but not the E404X).

While the devices are compatible with older versions of Device OS and 3.x, these versions as past the end-of-support date and are not recommended for use in production. Only 2.x LTS remains in the Extended Support and Maintenance (ESM) window.

For information on upgrading Device OS, see Version information. For the latest version shipped from the factory, see Manufacturing firmware versions page. See also Long Term Support (LTS) releases.

Interfaces

Block diagram

Power

The E series can be powered via the VIN (3.88V-12VDC) pin, over USB, or a LiPo battery.

VIN

The input voltage range on VIN pin is 3.88VDC to 12VDC. When powering from the VIN pin alone, make sure that the power supply is rated at 10W (for example 5 VDC at 2 Amp). If the power source is unable to meet this requirement, you'll need connect the LiPo battery as well. An additional bulk capacitance of 470uF to 1000uF should be added to the VIN input when the LiPo Battery is disconnected. The amount of capacitance required will depend on the ability of the power supply to deliver peak currents to the cellular modem.

The E-Series LTE (E402, LTE Cat M1) can be powered with as little as 550 mA at 5V.

LiPo

This pin serves two purposes. You can use this pin to connect a LiPo battery directly without having to use a JST connector or it can be used to connect an external DC power source (and this is where one needs to take extra precautions). When powering it from an external regulated DC source, the recommended input voltage range on this pin is between 3.6V to 4.4VDC. Make sure that the supply can handle currents of at least 3Amp. This is the most efficient way of powering the E series since the PMIC by-passes the regulator and supplies power to the E series module via an internal FET leading to lower quiescent current.

When powered from a LiPo battery alone, the power management IC switches off the internal regulator and supplies power to the system directly from the battery. This reduces the conduction losses and maximizes battery run time. The battery provided with the E series module is a Lithium-Ion Polymer battery rated at 3.7VDC 1,800mAh. You can substitute this battery with another 3.7V LiPo with higher current rating. Remember to never exceed this voltage rating and always pay attention to the polarity of the connector.

Typical current consumption is around 180mA and up to 1.8A transients at 5VDC. In deep sleep mode, the quiescent current is 130uA (powered from the battery alone).

VBUS

This pin is internally connected to USB supply rail and will output 5V when the E series module is plugged into an USB port. It is intentionally left unpopulated. This pin will NOT output any voltage when the E series module is powered via VIN and/or the LiPo battery.

Most USB ports can supply only a maximum of 500mA, but the u-Blox GSM module on the E series alone can consume a peak of 800mA to 1800mA (2G/3G) or 550 mA (LTE Cat M1) of current during transmission. In order to compensate of this deficit, one must connect the LiPo battery at all times when powering from a traditional USB port for 2G/3G. The E series will intelligently source power from the USB most of the time and keep the battery charged. During peak current requirements, the additional power will be sourced from the battery. This reduces the charge-discharge cycle load on the battery, thus improving its longevity.

3V3 Pin

This pin is the output of the on-board 3.3V switching regulator that powers the microcontroller and the peripherals. This pin can be used as a 3.3V power source with a max load of 800mA. Unlike the Photon or the Core, this pin CANNOT be used as an input to power the E series module.

VDDA

Unlike the Electron, the E series module exposes the VDDA pin of the STM32 microcontroller separately. This pin powers the ADC block of the microcontroller. A maximum difference of 300 mV between VDD (in this case, 3V3) and VDDA can be tolerated during power-up and power-down operation. Under normal operations, connect the VDDA to 3V3 pin of the E0. Be sure to connect VDDA even if you are not using any analog circuitry; the device will fail to boot if not powered.

VBAT

This is the supply to the internal RTC, backup registers and SRAM. You can connect a backup battery to it (1.65 to 3.6VDC), if you wish to retain RTC/RAM when 3V3 is absent or simply tie it up to 3V3.

PMID

This pin is connected to the PMID pin of the bq24195 PMIC. You should leave this pin unconnected.


FCC approved antennas

Antenna Type Manufacturer MFG. Part # Gain
2G/3G PCB antenna Taoglas PC104.07.0165C 1dBi ~ 2.39dBi
LTE flex antenna Taoglas FXUB63.07.0150C 5.00dBi peak

Peripherals and GPIO

Peripheral Type Qty Input(I) / Output(O) FT[1] / 3V3[2]
Digital 30 I/O FT/3V3
Analog (ADC) 12 I 3V3
Analog (DAC) 2 O 3V3
UART 3 I/O 3V3
SPI 2 I/O 3V3
I2S 1 I/O 3V3
I2C 1 I/O FT
CAN 2 I/O 3V3[4]
USB 1 I/O 3V3
PWM 133 O 3V3

Notes: [1] FT = 5.0V tolerant pins. All pins except A3 and DAC are 5V tolerant (when not in analog mode). If used as a 5V input the pull-up/pull-down resistor must be disabled.

[2] 3V3 = 3.3V max pins.

[3] PWM is available on D0, D1, D2, D3, B0, B1, B2, B3, A4, A5, WKP, RX, TX with a caveat: PWM timer peripheral is duplicated on two pins (A5/D2) and (A4/D3) for 11 total independent PWM outputs. For example: PWM may be used on A5 while D2 is used as a GPIO, or D2 as a PWM while A5 is used as an analog input. However A5 and D2 cannot be used as independently controlled PWM outputs at the same time.

[4] Technically these pins are 5.0V tolerant, but since you wouldn't operate them with a 5.0V transceiver it's proper to classify them as 3.3V.

JTAG AND SWD

Pin D3 through D7 are JTAG interface pins. These can be used to reprogram your E series module bootloader or user firmware image with standard JTAG tools such as the ST-Link v2, J-Link, R-Link, OLIMEX ARM-USB-TINI-H, and also the FTDI-based Particle JTAG Programmer. If you are short on available pins, you may also use SWD mode which requires less pins.

E series module Pin JTAG SWD STM32F205RGT6 Pin Default Internal[1]
D7 JTAG_TMS SWD/SWDIO PA13 ~40k pull-up
D6 JTAG_TCK CLK/SWCLK PA14 ~40k pull-down
D5 JTAG_TDI PA15 ~40k pull-up
D4 JTAG_TDO PB3 Floating
D3 JTAG_TRST PB4 ~40k pull-up
3V3 Power
GND Ground
RST Reset

Notes: [1] Default state after reset for a short period of time before these pins are restored to GPIO (if JTAG debugging is not required, i.e. USE_SWD_JTAG=y is not specified on the command line.)

Memory map

STM32F205RGT6 Flash layout overview

  • Bootloader (16 KB)
  • DCD1 (16 KB), stores keys, mfg info, system flags, etc..
  • DCD2 (16 KB), swap area for DCD1
  • EEPROM emulation bank 1 (16 KB)
  • EEPROM emulation bank 2 (64 KB) [only 16k used]
  • Device OS (512 KB) [256 KB comms + 256 KB hal/platform/services]
  • Factory backup, OTA backup and user application (384 KB) [3 x 128 KB]

DCD Layout

The DCD area of flash memory has been mapped to a separate DFU media device so that we can incrementally update the application data. This allows one item (say, server public key) to be updated without erasing the other items.

DCD layout as of v0.4.9 found here in firmware

Region Offset Size
system flags 0 32
version 32 2
device private key 34 1216
device public key 1250 384
ip config 1634 128
claim code 1762 63
claimed 1825 1
device id 1852 6
version string 1858 32
dns resolve 1890 128
reserved1 2018 64
server public key 2082 768
padding 2850 2
flash modules 2852 100
product store 2952 24
cloud transport 2977 1
alt device public key 2978 128
alt device private key 3106 192
alt server public key 3298 192
alt server address 3490 128
reserved2 3618 1280

Note: Writing 0xFF to offset 3106 (DEFAULT key used on E series module) will cause the device to re-generate a new private UDP/ECC key on the next boot. TCP keys are currently unsupported on the E series module but would be located at offset 34. You should not need to use this feature unless your keys are corrupted.

// Regenerate Alternate Keys (Default)
echo -en "\xFF" > fillbyte && dfu-util -d 2b04:d00a -a 1 -s 3106 -D fillbyte
// Regenerate TCP Keys (Unsupported)
echo -en "\xFF" > fillbyte && dfu-util -d 2b04:d00a -a 1 -s 34 -D fillbyte

Memory map (common)

Region Start Address End Address Size
Bootloader 0x8000000 0x8004000 16 KB
DCD1 0x8004000 0x8008000 16 KB
DCD2 0x8008000 0x800C000 16 KB
EEPROM1 0x800C000 0x8010000 16 KB
EEPROM2 0x8010000 0x8020000 64 KB

Memory map (modular firmware - default)

Before 0.6.0 firmware

Region Start Address End Address Size
System Part 1 0x8020000 0x8040000 128 KB
System Part 2 0x8040000 0x8060000 128 KB
Application 0x8080000 0x80A0000 128 KB
Factory Reset/Extended Application 0x80A0000 0x80C0000 128 KB
OTA Backup 0x80C0000 0x80E0000 128 KB
Decompress region 0x80E0000 0x8100000 128 KB

Since 0.6.0 firmware

Region Start Address End Address Size
System Part 2 0x8020000 0x8040000 128 KB
System Part 3 0x8040000 0x8060000 128 KB
System Part 1 0x8060000 0x8080000 128 KB
Application 0x8080000 0x80A0000 128 KB
Factory Reset/Extended Application 0x80A0000 0x80C0000 128 KB
OTA Backup 0x80C0000 0x80E0000 128 KB
Decompress region 0x80E0000 0x8100000 128 KB

Memory map (monolithic firmware - optional)

Region Start Address End Address Size
Firmware 0x8020000 0x8080000 384 KB
Factory Reset 0x8080000 0x80E0000 384 KB
Unused (factory reset modular) 0x80E0000 0x8100000 128 KB

Pin and button definition

Pin markings:

LED Status

Charge status LED

State Description
ON Charging in progress
OFF Charging complete
Blink at 1Hz Fault condition[1]
Rapid blinking Battery disconnected[2]

Notes:

[1] A fault condition can occur due to several reasons, for example, battery over/under voltage, temperature fault or safety timer fault. You can find the root cause by reading the fault register of the power management IC in firmware.

[2] You can stop this behavior by either plugging in the LiPo battery or by disabling the charging using the appropriate firmware command.

System RGB LED

Unlike the Electron, the E series module does not have an on-board RGB status LED. We have provided its individual control pins for you to connect an LED of your liking. This will allow greater flexibility in the end design of your products.

For a detailed explanation of different color codes of the RGB system LED, please take a look here.

Pinout diagram

You can download a high resolution pinout diagram in a PDF version here.

Pin description

# PIN FUNCTION DESCRIPTION
1 VIN POWER This pin can be used as an input or output. As an input, supply 5VDC to 12VDC to power the Electron. When the Electron is powered via the USB port, this pin will output a voltage of approximately 4.8VDC due to a reverse polarity protection series Schottky diode between VBUS and VIN. When used as an output, the max load on VIN is 1Amp.
2 GND POWER System ground.
3 VBUS POWER This is connected to the VBUS power pin of the USB port.
4 GND POWER System ground.
5 LIPO POWER This is connected to the +LiPo connector.
6 NC TBD Do not connect.
7 GND POWER System ground.
8 PMID POWER This is connected to the PMID pin of the PMIC.
9 3V3 POWER This is the output of the 3V3 regulator on the E0.
10 VDDA POWER This is the input to the analog block of the STM32.
11 VBAT POWER Supply to the internal RTC, backup registers and SRAM when 3V3 is not present (1.65 to 3.6VDC).
12 GND POWER System ground.
13 USB+ IO Data+ pin of the USB port.
14 USB- IO Data- pin of the USB port.
15 GND POWER System ground.
16 TX IO Primarily used as UART TX, but can also be used as a digital GPIO or PWM.
17 RX IO Primarily used as UART RX, but can also be used as a digital GPIO or PWM.
18 GND POWER System ground.
19 WKP IO Active-high wakeup pin, wakes the module from sleep/standby modes. When not used as a WAKEUP, this pin can also be used as a digital GPIO, ADC input or PWM. Can be referred to as A7 when used as an ADC.
20 DAC IO 12-bit Digital-to-Analog (D/A) output (0-4095), referred to as DAC or DAC1 in software. Can also be used as a digital GPIO or ADC. Can be referred to as A6 when used as an ADC.
21 A5 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
22 A4 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
23 A3 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
24 A2 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
25 A1 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
26 A0 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
27 GND POWER System ground.
28 B5 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
29 B4 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), and also digital GPIOs.
30 B3 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), PWM and also digital GPIOs.
31 B2 IO 12-bit Analog-to-Digital (A/D) inputs (0-4095), PWM and also digital GPIOs.
32 B1 IO Digital only GPIO, and PWM.
33 B0 IO Digital only GPIO, and PWM.
34 GND POWER System ground.
35 D7 IO Digital only GPIO.
36 D6 IO Digital only GPIO.
37 D5 IO Digital only GPIO.
38 D4 IO Digital only GPIO.
39 D3 IO Digital only GPIO, and PWM.
40 D2 IO Digital only GPIO, and PWM.
41 D1 IO Digital only GPIO, and PWM.
42 D0 IO Digital only GPIO, and PWM.
43 GND POWER System ground.
44 C5 IO Digital only GPIO, and PWM.
45 C4 IO Digital only GPIO, and PWM.
46 C3 IO Digital only GPIO.
47 C2 IO Digital only GPIO.
48 C1 IO Digital only GPIO.
49 C0 IO Digital only GPIO.
50 NC TBD Do not connect.
51 GND POWER System ground.
52 BLU IO Blue pin of the RGB LED.
53 GRN IO Green pin of the RGB LED.
54 RED IO Red pin of the RGB LED.
55 MODE IO Connected to the MODE button input.
56 RST I Active-low reset input.
57 STAT O Connected to the charge status pin of the PMIC.
58 GND POWER System ground.
59 GND POWER System ground.
60 GND POWER System ground.
61 UB_USB+ IO Data+ pin of the u-blox USB port.
62 UB_USB- IO Data- pin of the u-blox USB port.
63 UB_VUSB_DET IO USB detect pin of the u-blox USB port. 5V on this pin enables the u-blox's USB interface.

[1] PWM is available on D0, D1, D2, D3, B0, B1, B2, B3, A4, A5, WKP, RX, TX with a caveat: PWM timer peripheral is duplicated on two pins (A5/D2) and (A4/D3) for 11 total independent PWM outputs. For example: PWM may be used on A5 while D2 is used as a GPIO, or D2 as a PWM while A5 is used as an analog input. However A5 and D2 cannot be used as independently controlled PWM outputs at the same time.

Technical specifications

Absolute maximum ratings [1]

Parameter Symbol Min Typ Max Unit
Supply Input Voltage VIN-MAX +17 V
Supply Output Current IIN-MAX-L 1 A
Battery Input Voltage VLiPo +6 V
Supply Output Current I3V3-MAX-L 800 mA
Storage Temperature Tstg -30 +75 °C
ESD Susceptibility HBM (Human Body Mode) VESD 2 kV

[1] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter Symbol Min Typ Max Unit
Supply Input Voltage VIN +3.88[1] +12 V
Supply Output Voltage VIN +4.8 V
Supply Output Voltage V3V3 +3.3 V
LiPo Battery Voltage VLiPo +3.6 +4.4 V
Supply Input Voltage VVBAT +1.65 +3.6 V
Supply Input Current (VBAT) IVBAT 19 uA
Operating Current (uC on, Cellular ON) IIN avg 180 250 mA
2G/3G Peak Current (uC on, Cellular ON) IIN pk 800[2] 1800[3] mA
LTE Peak Current (uC on, Cellular ON) IIN pk 550 mA
Operating Current (uC on, Cellular OFF) IIN avg 47 50 mA
Sleep Current (4.2V LiPo, Cellular OFF) IQs 0.8 2 mA
Deep Sleep Current (4.2V LiPo, Cellular OFF) IQds 110 130 uA
Operating Temperature Top -40[4] +85[4] °C
Humidity Range Non condensing, relative humidity 95 %

Notes:

[1] The minimum input voltage is software defined with a user selectable range of 3.88V to 5.08V in 80mV increments. Out of the box, the minimum input voltage is set to 4.36V in order for the LiPo battery to be able to properly charge.

[2] 3G operation

[3] 2G operation

[4] When powering the E series module with a LiPo battery (or other battery chemistries), please note that the operating temperatures will be affected accordingly.


Radio specifications

The E series is available in two different versions: A 2G/3G global model (SARA-U201) and a LTE Cat M1 model (SARA-R410M-02B).

Note that LTE is LTE Cat M1, not the standard LTE (LTE Cat 1) used by your mobile phone. It is a low-power and low-data-rate variation of LTE for use with IoT devices. It can only be used in the United States, Canada. and Mexico at this time.

For a complete list of carriers and supported countries, see the carrier guide.

2G cellular characteristics E314 & E310:

Parameter SARA-U201
Protocol stack 3GPP Release 7
MS Class Class B
Bands GSM 850 MHz
E-GSM 900 MHz
DCS 1800 MHz
PCS 1900 MHz
Power Class Class 4 (33 dBm) for 850/900 bands
Class 1 (30 dBm) for 1800/1900 bands

3G cellular characteristics E314 & E310:

Parameter SARA-U201
Protocol stack 3GPP Release 7
UE Class Class A
Bands Band 5 (850 MHz)
Band 8 (900 MHz)
Band 2 (1900 MHz)
Band 1 (2100 MHz)
Power Class Class 3 (24 dBm) for all bands

u-blox SARA-R410M-02B-00 or R410M-02B-03

Parameter Value
Protocol stack 3GPP Release 13
RAT LTE Cat M1 Half-Duplex
LTE FDD Bands Band 12 (700 MHz)
Band 28 (700 MHz)
Band 13 (750 MHz)
Band 20 (800 MHz)
Band 5 (850 MHz)
Band 8 (900 MHz)
Band 4 (1700 MHz)
Band 3 (1800 MHz)
Band 2 (1900 MHz)
Power class Class 3 (23 dBm)

u-blox SARA-R510S-01B

Parameter Value
Protocol stack 3GPP Release 13
RAT LTE Cat M1 Half-Duplex
LTE FDD Bands Band 12 (700 MHz)
Band 13 (750 MHz)
Band 26 (850 MHz)
Band 5 (850 MHz)
Band 4 (1700 MHz)
Band 2 (1900 MHz)
Band 25 (1900 MHz)
Power class Class 3 (23 dBm)

I/O characteristics

These specifications are based on the STM32F205RGT6 datasheet, with reference to E series pin nomenclature.

Parameter Symbol Conditions Min Typ Max Unit
Standard I/O input low level voltage VIL -0.3 0.28*(V3V3-2)+0.8 V
I/O FT[1] input low level voltage VIL -0.3 0.32*(V3V3-2)+0.75 V
Standard I/O input high level voltage VIH 0.41*(V3V3-2)+1.3 V3V3+0.3 V
I/O FT[1] input high level voltage VIH V3V3 > 2V 0.42*(V3V3-2)+1 5.5 V
VIH V3V3 ≤ 2V 0.42*(V3V3-2)+1 5.2 V
Standard I/O Schmitt trigger voltage hysteresis[2] Vhys 200 mV
I/O FT Schmitt trigger voltage hysteresis[2] Vhys 5% V3V3[3] mV
Input leakage current[4] Ilkg GND ≤ Vio ≤ V3V3 GPIOs ±1 µA
Input leakage current[4] Ilkg RPU Vio = 5V, I/O FT 3 µA
Weak pull-up equivalent resistor[5] RPU Vio = GND 30 40 50 k Ω
Weak pull-down equivalent resistor[5] RPD Vio = V3V3 30 40 50 k Ω
I/O pin capacitance CIO 5 pF
DAC output voltage (buffers enabled by default) VDAC 0.2 V3V3-0.2 V
DAC output resistive load (buffers enabled by default) RDAC 5 k Ω
DAC output capacitive load (buffers enabled by default) CDAC 50 pF

Notes:

[1] FT = Five-volt tolerant. In order to sustain a voltage higher than V3V3+0.3 the internal pull-up/pull-down resistors must be disabled.

[2] Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.

[3] With a minimum of 100mV.

[4] Leakage could be higher than max. if negative current is injected on adjacent pins.

[5] Pull-up and pull-down resistors are designed with a true resistance in series with switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

Mechanical specifications

Dimensions and weight

  • Width = 36 mm
  • Height = 43 mm
  • Thickness = 4.6 mm
  • Weight = 8 gms

An E series part for EAGLE can be found in the Particle EAGLE library

Schematics

USB

The USB data lines are terminated with 22 Ohm resistors. These data pins are also exposed via small through holes next to the USB connector and are labeled D+ and D-. The VBUS (+5VDC VCC of the USB port) is fed to the PMIC via a 3Amp Schottky diode (SS3P3). The VBUS pin is also available via the unpopulated header hole on the top-right side of the E series.

PMIC (Power management integrated circuit)

The E series uses TI's BQ24195 as the power management and charging unit. This PMIC intelligently sources power from either the VIN pin, the USB port and/or the LiPo battery. When all the power sources as connected, the unit tries to source power from the USB or VIN as default and continues to charge the LiPo battery. When the battery is completely charged, the power is then sourced from USB/VIN alone. If there is a power deficit (which generally occurs during cellular radio transmission), the additional power is then sourced from the battery as required. The unit can also seamlessly switch back to the battery when other sources of power are suddenly removed.

The DP data pin of the USB is used by the PMIC to detect the presence of a USB power source. It then adjusts the charge current and the limit based on the type of USB power source it detects. This does not always happen successfully since there are a lot of USB hubs and chargers out there that do not meet the USB design guidelines. If the detection is unsuccessful, the PMIC defaults to a 500mA current limit. A user can always adjust these parameters via software.

The microcontroller communicates with the PMIC via an I2C interface (pins PC9 and PA8). This interface allows the microcontroller to read the status of the PMIC and set its various parameters.

Microcontroller

The E series uses ST Microelectronics's STM32F205RGT6 ARM Cortex M3 microcontroller running at 120MHz.


U-blox cellular module

The u-blox cellular module talks to the microcontroller over a full-duplex USART interface using a standard set of AT commands. The MFF2 embedded SIM chip is directly connected to the u-blox module.

The MFF2 SMD SIM is not an e-sim and is not reprogrammable to other carriers. It's set to the Particle MVNO and cannot be changed.

Buffers

Since u-blox module's communication interface operates at 1.8VDC, while the STM32F205RGT6 microcontroller operates at 3.3VDC, we need voltage translators in-between them. This is achieved with two SN74AVC4T245 non-inverting buffers. The default state of the USART pins is set with the help of pull-up and pull-down resistors, and the unused input pins are tied to GND.

3.3V regulator and fuel gauge

The output (3.8V net) of the PMIC is fed directly to the u-blox cellular module and a 3.3VDC high efficiency switching regulator (TPS62290). This 3.3VDC regulator helps power the microcontroller, fuel gauge and the buffers.

The E series employs a MAX17043 fuel gauge to monitor the LiPo battery voltage and it's state of charge. The microcontroller communicates with it over an I2C interface (same channel as the PMIC).

Product variants

Name Connectivity Geography u-blox variant Band Support
E314 3G with 2G fallback (EtherSIM) Global SARA-U201 850/900/1800/1900/2100 MHz
E310 3G with 2G fallback (pre-2021) Global SARA-U201 850/900/1800/1900/2100 MHz
E404X LTE M1 only (EtherSIM) US, Canada, Mexico R510S-01B LTE M1: 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28
E404 LTE M1 only (EtherSIM) US, Canada, Mexico R410M-02B or -03 LTE M1: 1, 2, 3, 4, 5, 8, 12, 13, 20, 25, 26, 28, 39
E402 LTE M1 only (pre-2021) US, Canada, Mexico R410M-02B LTE M1: 1, 2, 3, 4, 5, 8, 12, 13, 20, 25, 26, 28, 39

Country compatibility

Country Model Technologies Carriers
Afghanistan E314 2G, 3G MTN
Albania E314 2G, 3G ALBtelecom, Telekom, Vodafone
Algeria E314 2G, 3G Mobilis, Ooredoo
Anguilla E314 2G, 3G Flow
Antigua and Barbuda E314 2G, 3G Flow
Argentina E314 2G, 3G Claro, Movistar, Personal
Armenia E314 2G, 3G Beeline, Ucom
Aruba E314 2G, 3G Setar
Austria E314 2G, 3G 3 (Drei), A1, T-Mobile
Azerbaijan E314 2G, 3G Azercell, Bakcell, NAR Mobile
Bahamas E314 2G, 3G Aliv, BTC Bahamas
Bahrain E314 2G, 3G Zain
Bangladesh E314 2G, 3G Bangalink, GrameenPhone
Barbados E314 2G, 3G Flow
Belarus E314 2G, 3G A1
Belgium E314 2G, 3G Base, Orange, Proximus
Belize E314 3G Smart
Bolivia E314 2G, 3G NuevaTel
Bosnia and Herzegovina E314 2G, 3G BH Telecom, HT Eronet
Brunei E314 3G DST
Bulgaria E314 2G, 3G A1, Telenor, Vivacom
Burkina Faso E314 2G, 3G Orange
Cambodia E314 2G, 3G Metfone
Canada E404 M1 Bell Mobility, Rogers Wireless, Telus
Cayman Islands E314 2G, 3G Flow
Chad E314 2G, 3G Airtel
Chile E314 2G, 3G Claro, Entel, Movistar
Colombia E314 2G, 3G Movistar, Tigo
Congo (Brazzaville) E314 2G, 3G Airtel
Congo (Kinshasa) E314 2G, 3G Airtel
Costa Rica E314 2G, 3G Movistar
Côte d'Ivoire E314 2G, 3G MTN
Croatia E314 2G, 3G Hrvatski Telekom, Tele2
Cyprus E314 2G, 3G Cytamobile-Vodafone, MTN
Czechia E314 2G O2, T-Mobile, Vodafone
Denmark E314 2G, 3G 3 (Tre), TDC, Telenor, Telia
Dominica E314 2G, 3G Flow
Dominican Republic E314 2G, 3G Altice Dominicana, Claro, Viva
Ecuador E314 2G, 3G Claro, Movistar
Egypt E314 2G, 3G Etisalat, Orange
El Salvador E314 2G, 3G Claro, Telefonica
Estonia E314 2G, 3G Elisa, Tele2, Telia
eSwatini E314 2G, 3G MTN
Ethiopia E314 2G, 3G Ethio Telecom
Faroe Islands E314 2G, 3G Faroese Telecom, Vodafone
Finland E314 2G, 3G DNA, Elisa, Telia
France E314 2G, 3G Bouygues, Free Mobile, Orange, SFR
French Guiana E314 2G, 3G Digicel
Gabon E314 2G, 3G Airtel
Georgia E314 2G, 3G Beeline, Geocell
Germany E314 2G, 3G O2, Telekom, Vodafone
Ghana E314 2G, 3G AirtelTigo, MTN, Vodafone
Gibraltar E314 2G, 3G Gibtel
Greece E314 2G Cosmote, Vodafone, Wind
Grenada E314 2G Flow
Guadeloupe E314 2G, 3G Orange
Guatemala E314 2G, 3G Claro, Movistar
Guinea E314 2G, 3G MTN
Guinea-Bissau E314 2G, 3G MTN
Guyana E314 2G Digicel
Haiti E314 2G, 3G Digicel
Honduras E314 2G, 3G Claro, Tigo
Hong Kong E314 2G, 3G CMHK, CSL, SmarTone
Hungary E314 2G, 3G Magyar Telekom, Telenor, Vodafone
Iceland E314 2G, 3G Nova, Siminn, Vodafone
Indonesia E314 2G, 3G Indosat, Telkomsel, XL Axiata
Ireland E314 2G, 3G 3 (Tre), Meteor, O2, Vodafone
Israel E314 2G, 3G Hot Mobile, Orange, Pelephone
Italy E314 2G, 3G TIM, Vodafone, Wind
Jamaica E314 2G, 3G Digicel, Flow
Japan E314 3G NTT DoCoMo
Jordan E314 2G, 3G Zain
Kazakhstan E314 2G, 3G Beeline, K-Cell
Kenya E314 2G, 3G Airtel
Kuwait E314 2G, 3G Viva, Zain
Kyrgyzstan E314 2G, 3G Beeline
Latvia E314 2G, 3G Bite, LMT, Tele2
Liechtenstein E314 2G, 3G Mobilkom, Orange
Lithuania E314 2G, 3G Bite, Omnitel, Tele2
Luxembourg E314 2G, 3G Orange, POST, Tango
Malawi E314 2G, 3G Airtel
Malaysia E314 2G, 3G Celcom, DiGi, Maxis
Malta E314 2G, 3G Go Mobile, Vodafone
Mexico E404 M1 AT&T, Telcel
Moldova E314 2G, 3G Moldcell, Orange
Mongolia E314 2G, 3G Mobicom, Unitel
Montenegro E314 2G, 3G Mtel, T-Mobile, Telenor
Mozambique E314 2G, 3G Vodacom
Myanmar E314 2G, 3G MPT, Telenor
Namibia E314 2G, 3G Telecom Namibia
Netherlands E314 2G, 3G KPN, T-Mobile, Vodafone
Nicaragua E314 2G, 3G Movistar
Nigeria E314 2G, 3G 9mobile, Airtel, Glo, MTN
Norway E314 2G, 3G TDC, Telenor, Telia
Pakistan E314 2G, 3G Mobilink, Telenor, Ufone, Warid
Palestine E314 2G, 3G Jawwal
Panama E314 2G, 3G Digicel, Movistar
Papua New Guinea E314 2G, 3G bmobile
Paraguay E314 2G, 3G Claro, Personal, Tigo, Vox
Peru E314 2G, 3G Claro, Entel, Movistar
Philippines E314 2G, 3G Globe, Smart
Poland E314 2G, 3G Orange, Play, Plus, T-Mobile
Portugal E314 2G, 3G NOS, TMN, Vodafone
Puerto Rico E314 2G, 3G Claro
Qatar E314 2G, 3G Ooredoo, Vodafone
Romania E314 2G, 3G Orange, Telekom Romania, Vodafone
Rwanda E314 2G, 3G Airtel, MTN
Saint Kitts and Nevis E314 2G, 3G Flow
Saint Lucia E314 2G, 3G Flow
Saint Vincent and the Grenadines E314 2G, 3G Flow
Serbia E314 2G, 3G Telenor, VIP
Sint Maarten E314 2G, 3G TelCell
Slovakia E314 2G, 3G O2, Orange, Telekom
Slovenia E314 2G, 3G A1, Mobitel
South Africa E314 2G, 3G Cell C, MTN, Vodacom
South Korea E314 3G KT, SK Telecom
South Sudan E314 2G, 3G MTN
Spain E314 2G, 3G Orange, Telefonica, Vodafone, Yoigo
Sri Lanka E314 2G, 3G Dialog, Mobitel
Suriname E314 2G, 3G Telesur
Sweden E314 2G, 3G 3 (Tre), Tele2, Telenor, Telia
Switzerland E314 3G Salt, Sunrise, Swisscom
Taiwan E314 3G Chunghwa, T Star, Taiwan Mobile
Tajikistan E314 2G, 3G Beeline, Tcell
Tanzania E314 2G, 3G Airtel
Thailand E314 2G, 3G AIS, DTAC, True Move
Trinidad and Tobago E314 2G, 3G Digicel, TSTT
Tunisia E314 2G, 3G Orange Tunisie, Tunisie Telecom
Turks and Caicos Islands E314 2G, 3G Flow
Uganda E314 2G, 3G Africell, Airtel, MTN
Ukraine E314 2G, 3G Kyivstar, Life, MTS
United Kingdom E314 2G, 3G 3, EE, Manx, O2, Sure, Vodafone
United States E404 M1 AT&T, T-Mobile (USA)
Uruguay E314 2G, 3G Antel, Claro, Movistar
Uzbekistan E314 2G, 3G Beeline
Venezuela E314 2G, 3G Movistar
Vietnam E314 2G, 3G MobiFone, Viettel, Vinaphone
Virgin Islands (British) E314 2G, 3G CCT, Flow
Zambia E314 2G, 3G Airtel

Ordering information

SKU Description Region Modem EtherSIM Lifecycle Replacement
E404XTRAY50 E-Series LTE CAT-M1 (NorAm, EtherSIM), Tray [x50] NORAM R510 GA
E310KIT E-Series 2G/3G (Global - E310) Evaluation Kit, [x1] Global U201 NRND E314KIT
E314KIT E-Series 2G/3G (Global - E314) Evaluation Kit, [x1] Global U201 NRND
E314TRAY50 E-Series 2G/3G (Global - E314), Tray [x50] Global U201 NRND
E402KIT E-Series LTE CAT-M1 (NorAm) Evaluation Kit, [x1] NORAM R410 NRND
E402TRAY50 E-Series LTE CAT-M1 (NorAm), Tray [x50] NORAM R410 NRND E404XTRAY50
E404KIT E-Series LTE-M (NorAm, EtherSIM) Evaluation Kit, [x1] NORAM R410 NRND
E404MOD1 E-Series LTE-M (NorAm, EtherSIM), [x1] NORAM R410 NRND
E310MOD1 E-Series 2G/3G (Global - E310), [x1] Global U201 Deprecated
E310TRAY50 E-Series 2G/3G (Global - E310), Tray [x50] Global U201 Deprecated
E313EA E-Series 2G/3G (Global - E313), [x1] Global U201 Deprecated
E314MOD1 E-Series 2G/3G (Global - E314), [x1] Global U201 Deprecated
E402MOD1 E-Series LTE CAT-M1 (NorAm), [x1] NORAM R410 Deprecated
E404TRAY50 E-Series LTE CAT-M1 (NorAm, EtherSIM), Tray [x50] NORAM R410 Deprecated E404XTRAY50
E313TRAY50 E-Series 2G/3G (Global - E313), Tray [x50] Global U201 End of life

Product handling

ESD precautions

The E series contains highly sensitive electronic circuitry and is an Electrostatic Sensitive Device (ESD). Handling an E series without proper ESD protection may destroy or damage it permanently. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates EØs. ESD precautions should be implemented on the application board where the E series is mounted. Failure to observe these precautions can result in severe damage to the E series!

Connectors

There are two connectors on the E series that will get damaged with improper usage.

The micro B USB connector on the E series is soldered on the PCB with large surface pads as well as couple of through hole anchor points. Despite this reinforcement, it is very easy to rip out the connector if too much stress is put on in the vertical direction.

The U.FL antenna connector is not designed to be constantly plugged and unplugged. The antenna pin is static sensitive and you can destroy the radio with improper handling. A tiny dab of glue (epoxy, rubber cement, liquid tape or hot glue) on the connector can be used securely hold the plug in place.

Default settings

The E series comes pre-programmed with a bootloader and a user application called Tinker. This application works with an iOS and Android app also named Tinker that allows you to very easily toggle digital pins, take analog and digital readings and drive variable PWM outputs.

The bootloader allows you to easily update the user application via several different methods, USB, OTA, Serial Y-Modem, and also internally via the Factory Reset procedure. All of these methods have multiple tools associated with them as well.

You may use the Particle Web IDE to code, compile and flash a user application OTA (Over The Air). Particle Workbench is a full-featured desktop IDE for Windows, Mac, and Linux based on VSCode and supports both cloud-based and local gcc-arm compiles. The Particle CLI provides a command-line interface for cloud-based compiles and flashing code over USB.

Glossary

Term Definition
SMPS Switch Mode Power Supply
SIM Subscriber Identity Module
RF Radio Frequency
SMT Surface Mount Technology (often associated with SMD which is a surface mount device).
LED Light Emitting Diode
RGB LED Red green and blue LEDs combined and diffused in one package.
USB Universal Serial Bus
Quiescent current Current consumed in the deepest sleep state.
FT Five-tolerant; Refers to a pin being tolerant to 5V.
3V3 +3.3Volt; The regulated +3.3V supply rail. Also used to note a pin is only 3.3V tolerant.
PMIC Power Management Integrated Circuit
LiPo Lithium-ion Polymer Battery
GSM Global System for Mobile Communications
CDMA Code Division Multiple Access
OTA Over The Air; describing how firmware is transferred to the device.
uC Microcontroller

FCC ISED CE warnings and end product labeling requirements

Federal Communication Commission Interference Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

  • Reorient or relocate the receiving antenna.
  • Increase the separation between the equipment and receiver.
  • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
  • Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

  1. This device may not cause harmful interference, and
  2. This device must accept any interference received, including interference that may cause undesired operation.

FCC Radiation Exposure Statement: This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter. This End equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End Product Labeling The final end product must be labeled in a visible area with the following:

Contains FCC ID:

  • XPY1CGM5NNN (For 3G E series module using the U201 module)
  • XPY2AGQN4NNN (For LTE E series module using the R410 module)

Manual Information to the End User The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user’s manual of the end product which integrates this module.


Canada Statement This device complies with Industry Canada’s licence-exempt RSSs. Operation is subject to the following two conditions:

  1. This device may not cause interference; and
  2. This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence.

L’exploitation est autorisée aux deux conditions suivantes:

  1. l’appareil ne doit pas produire de brouillage;
  2. l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Caution Exposure: This device meets the exemption from the routine evaluation limits in section 2.5 of RSS102 and users can obtain Canadian information on RF exposure and compliance. Le dispositif répond à l'exemption des limites d'évaluation de routine dans la section 2.5 de RSS102 et les utilisateurs peuvent obtenir des renseignements canadiens sur l'exposition aux RF et le respect.

The final end product must be labelled in a visible area with the following: The Industry Canada certification label of a module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the Industry Canada certification number of the module, preceded by the words “Contains transmitter module”, or the word “Contains”, or similar wording expressing the same meaning, as follows:

Contains transmitter module ISED:

  • 8595A-SARAU201 (For 3G E series using the U201 module)
  • 8595A-2AGQN4NNN (For LTE E series module using the R410 module)

This End equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body. Cet équipement devrait être installé et actionné avec une distance minimum de 20 centimètres entre le radiateur et votre corps.

The end user manual shall include all required regulatory information/warning as shown in this manual.

For an in-depth review on certifications, please click here.

Revision history

Revision Date Author Comments
v001 07-Nov-2017 MB Initial release
v002 31-Jul-2019 RK Added LTE information
Removed E201, E302, E303 models
v003 11-Mar-2020 RK Corrected FCC ID for 2G/3G model
v004 14-Mar-2022 RK Added deprecation notice
v005 31-Jan-2023 RK Added Device OS versions

Known errata

Contact

Web

https://www.particle.io

Community Forums

https://community.particle.io